p. 30g - 334

Quantitative Elemental Analysis of Art Objects by Energy-Dispersive X-ray Fluorescence Spectroscopy

Victor F. Hanson

Henry Francis du Pont Winterthur Museum, Winterthur, Delaware 19735 (Received 30 January 1973; revision received 12 April 1973)

Techniques have been developed for the analysis of glass and metal objects for up to 35 elements in a few minutes for aiding the curator in determining the authenticity of many museum objects. No samples are removed nor are the objects altered by the measurements. Trace elements present as impurities in older pieces and absent in modern forgeries as well as the major constituents can be measured with accuracies at least as high as wet chemical and spectrographic methods generally employed in museum laboratories. Tables of instrument response to 71 elements presented together with empirical corrections for matrix effects permit direct calculations of weight percentages within 20% of all the elements present. Employment of reference standards and the use of the principal element as an "internal standard" improve this accuracy to better than 1% of the major elements present. Charts of "peak heights" of the various spectral lines of each element plotted as a function of energy permit a rapid determination of the most probable elements that are present in a spectrum. It also aids in selecting peaks that are free of interference from other elements. Tables of peak heights and energies of the peaks of 71 elements listed in order of atomic number indicate where the spectral peaks of the various elements will be found and what their relative intensity is. Procedures are described for determining weight percent of 15 or more elements in metal and 30 or more in glass objects from spectral data. Examples of analytical results are given for typical museum objects and specially prepared samples.

INDEX HEADINGS: Nondestructive analysis; Art object analysis; Archeological object analysis; Analysis, for elements; Fluorescence; Instrumentation, x-ray; Methods, analytical; X-ray fluorescence.

INTRODUCTION

The Henry Francis du Pont Winterthur Museum contains a collection of American decorative arts spanning the 200 years from the 17th century through the early 19th century. In a great country house surrounded by a private park of striking beauty are examples of domestic architecture, furniture, textiles, silver, pewter, ceramics, paintings, and prints, shown in almost 200 period rooms and special displays. The thousands of pieces of silver, brass, pewter, glass, and ceramics in the collection have been characterized by date, provenance, maker, style, and other attributes that can be evaluated by the faculties of the human senses. Early in 1960, Charles Montgomery and Charles Hummel of the museum and C. Lalor Burdick of the Lalor Foundation initiated a program to add chemical compositional information to the descriptive information then being provided by the curatorial staff. Results from a joint program with the Department of Chemistry of the University of Delaware, which was being funded by the Copeland-Andelot Foundation, indicated that information of considerable interest to the curatorial and conservation staffs could indeed be obtained from the chemical analysis of museum objects.

In 1966, plans submitted by staff to Henry Francis du Pont for approval of a new research building included a laboratory provided with instruments for analyzing various museum objects. Naturally there was a great concern for methods then in use that required the removal of samples for analysis.

The energy-dispersive x-ray fluorescence analyzer, which was developed in the 1960's as a qualitative analysis instrument, showed promise of being adaptable for quantitative analysis. We therefore selected this as the primary instrument when the laboratory was completed in 1969.

I. EXPERIMENTAL

A. Description of the Energy-Dispersive X-ray Fluorescence Analyzer

A combination of electronic components made by the Kevex Corporation, Packard Instrument Company, and Hewlett Packard was selected since this appeared to provide the flexibility which would be required for the development of quantitative techniques applicable to a wide range of materials.

The instrument (Fig. 1) employs radioactive x-ray emitters to excite the atoms in an object which is placed

Volume 27, Number 5, 1973

Sep/Ock

FIG. 1. Block diagram of analyzer system.

bout 2 cm from the ring-shaped radiation source. The bject is not altered by the measurement nor is there a adiation hazard since the sources are weak and of low enetration power. The elements in the object fluoresce t energies characteristic of those elements. X-rays from he sample pass through a 7-mm hole in the source older, thence through a 0.025-mm beryllium window to ι lithium-doped silicon detector which is maintained at iquid nitrogen temperature. The x-rays from the object produce electrical pulses proportional to the energy of hose x-rays. The pulses from the detector are amplified inearly, sorted, and stored in one of two 512-channel nemory banks. Each channel has a capacity of a million counts. The contents of the memory banks are continually displayed on an oscilloscope and can be printed out ligitally on a teletypewriter or an X-Y plotter at any time. Since counts from all the elements present in the object are accumulated simultaneously, the typical analysis time is in the 5 to 15 min range for up to 30 or more elements.

B. Development of Quantitative Techniques

The efficiency of the conversion of the x-rays from the radioactive source to fluorescence x-rays in the sample to electrical pulses in the detector varies with the source employed and the competition between the various elements present. For example, when elements of contiguous atomic numbers are present such as nickel, copper, and zinc in German silver, there are several internal fluorescence energy transfers so that the lower energy

fluorescence of the nickel is enhanced at the expense of the copper and zinc, as illustrated in Fig. 2, a, b, and c. This and other complications dictate that reference standards be employed if quantitative results are to be obtained.

Accordingly, we had brass and silver alloy castings made which would span the ranges of compositions that we expected to encounter. Table I lists the silver standards and Table II the brass standards which were prepared for us by Handy and Harman of Fairfield, Connecticut. The alloys, which were induction-melted, were cast in chilled copper molds to minimize segregation of the elements during the cooling cycle. The effect of segregation will be noted from the difference in composition of the chilled face at the top of the casting which was the last part to solidify. While we hoped to check our calibration by using silver coins, we found $0.67\,\%$ difference in the nominal 10 % copper content on the two sides of a 1944 U.S. coin because of segregation of the elements in the original cast billet. We finally adopted Ref. No. 47.4 arbitrarily as our silver reference standard. Subsequently, Dr. George Reilly of this Laboratory made 42 duplicate runs over a 2-week period on our silver reference 47.4 with the following results:

	Silver (%)	Copper (%)	Gold (%)
\overline{X} (Arithmetic mean) \overline{d} (Average deviation) S (Standard deviation) Confidence limits99 Percentage	$\begin{array}{c} 92.64 \\ 0.14 \\ 0.17 \\ 0.08 \\ 92.64 \pm 0.08 \end{array}$	$6.85 \\ 0.09 \\ 0.14 \\ 0.06 \\ 6.85 \pm 0.06$	$\begin{array}{c} 0.4888\\ 0.0207\\ 0.0265\\ 0.012\\ 0.49\pm0.01\end{array}$

FIG. 2. Fluorescence energy transfer between elements. a (upper), spectra of nickel, copper, and zinc, atomic numbers 28, 29, and 30, each irradiated and recorded separately for 100 sec. Note the sensitivity of the instrument is highest for zinc, intermediate for copper, and lowest for nickel. b (middle), spectra of nickel, copper, and zinc each irradiated for 100 sec and the accumulated spectra plotted showing the additive effects of the overlapping peaks. The ordinates of the curves are the arithmetic sums of those shown in part a. c (lower), spectra of an alloy of 33.3% Ni, 33.3% Cu, and 33.3% Zn irradiated for 300 sec.

	Ni	Cu	Zn	Zn	Total count
Energy, kV Peak heights (b) Peak heights (c)	$7.6 \\ 3.8 \\ 5.3$	$8.2 \\ 4.7 \\ 5.2$	$8.7 \\ 5.4 \\ 2.7$	$9.7 \\ 1.0 \\ 0.4$	175 K 160 K

Note that over half the radiation from zinc indicated in part b has been transferred to copper and nickel with a net loss of only 10% of the total counts. This highly efficient energy transfer process illustrates the importance of having reference standards approximately the composition of the objects being analyzed if quantitative results are to be achieved.

These results gave us confidence that quantitative results could be obtained which are as reliable as our reference standards.

It then became clear that we would frequently be more interested in trace elements than in the major elements, especially when analyzing glass and ceramic ob-

TABLE I A. Silver series: Reference standards.^a

Ref.	ef. Weighed in (%)		Weighed in (%) Analyzed values, chilled side				Analyzed values, top side		
No.	Ag	Cu	Au	Ag	Cu	Au	Ag	Cu	Ag
47.1	92.5	7.5	0.00	92.2	7.7	0.00	93.4	6.6	0.00
47.2	92.5	7.4	0.10	92.5	7.3	0.08	93.8	6.0	0.05
47.3	92.5	7.3	0.20	92.4	7.4	0.14	93.7	5.8	0.16
47.4	92.5	7.0	0.50	92.5	7.0	0.50	93.8	5.3	0.45
47.5	90.0	10.0	0.00	88.4	12.1	0.00	89.5	11.8	0.00
47.6	95.0	5.0	0.00	94.5	5.6	0.00	95.8	4.1	0.00
47.7	85.0	15.0	0.00	81.5	18.6	0.00	87.4	12.6	0.00

^a Analysis results of "Reference Standards" cast blocks. The chilled side of 47.4 was selected as the arbitrary reference standard.

B. 1944 U.S. silver half-dollar.

	Ag	Cu	Au	· .
Specifications	90	10	0.00	
Heads	90.4	9.22	0.00	
Tails	89.8	9.89	0.00	

TABLE II. Brass series: Reference standards.ª

Ref.	Weighed in %			Ana c	lyzed va hilled si	de	Analyzed values, top side		
No.	Cu	Zn	Ag	Cu	Zn	Ag	Cu	Zn	Ag
29.1	80.0	20.0	0.00	80	20.2	0.00	82.0	18.6	0.004
29.2	70.0	30.0	0.00	71.1	28.9	0.005	71.0	29.6	0.006
29.3	60.0	40.0	0.00	60.5	38.5	0.006	62.0	37.0	0.010
29.4	75.0	25.0	0.00	73.4	25.3	0.010	77.5	22.9	0.008
29.5	75.0	24.9	0.10	75.8	24.0	0.105	77.5	22.9	0.160
29.6	75.0	24.8	0.20	76.8	23.6	0.202	78.0	22.4	0.155
29.7	75.0	24.5	0.50	75.0	24.5	0.50	77.2	23.1	0.400
29.7 ^b				74.5	25.2	0.47			
29.7°				75.5	25.0	0.42			

^a Analysis results of "reference standards" 25- \times 32- \times 12-mm cast brass blocks. The chilled face of Ref. 29.7 was selected to be the arbitrary reference standard. A slice 8 mm from the chilled face was cut by a hacksaw. The analysis of the intermediate face is given in the second from the bottom row and values from 32 mg of the cuttings are given in the bottom row.

^b Section 8 mm from chilled face.

^c 32-mg chips from interface.

jects. Here, too, we could expect overlapping peaks from some major elements to obscure the peaks from other elements at low concentration. We could also expect internal fluorescence energy transfer from peaks of one element to lower lying absorption edges of nearby elements.

While tables of emission energies of the various elements were available¹ at the outset, no clues were provided as to the relative intensities of the various peaks from a single element. ASTM subsequently published an elaborate set of tables listing emission energies of 92 elements which are quite useful in exploratory work.² The intensities of the peaks are a function of the excitation source, sample geometry, and matrix effects, to name a few. We procured a few high purity samples of the elements that interested us in studies of brass and silver objects. However, after finding many "strange" peaks in old glass and metal objects which we were unable to identify, we obtained samples of the remaining elements we expected to encounter in our metal and glass studies to verify the elements responsible for the strange peaks.

TABLE III.	Sensitivity	data:	Kevex	energy-dispersive	x-ray	analyzer
------------	-------------	-------	-------	-------------------	-------	----------

	Sol	IFCE		⁵⁵ Fe			²⁴¹ Am			$^{109}\mathrm{Cd}$	
Element	Line	Energy	Channel	Energy	Counts	Channel	Energy	Counts	Channel	Energy	Counts
11 Na Sodium	$rac{\mathrm{K}eta_1}{\mathrm{K}lpha_2}$	$\begin{array}{c} 1.07 \\ 1.04 \end{array}$	89 87	$\begin{array}{c} 1.07 \\ 1.04 \end{array}$	$\begin{array}{c} 0.001 \\ 0.001 \end{array}$	22	1.1	0.2	51	1.04	0.01
Na ₂ CO ₃ 12 Mg Magnesium	$rac{\mathrm{K}eta_1}{\mathrm{K}lpha_2}$	$\begin{array}{c} 1.30 \\ 1.25 \end{array}$	$\begin{array}{c} 107 \\ 105 \end{array}$	1.28 1.25	$\begin{array}{c} 0.01 \\ 0.08 \end{array}$	33 26	$\begin{array}{c} 1.65 \\ 0.18 \end{array}$	$\begin{array}{c} 0.15 \\ 0.18 \end{array}$	65	1.3	0.01
MgCO ₃ 13 Al	$K\beta_1$	1.56	134 124	1.60	$0.01 \\ 0.05$	$\frac{31}{28}$	1.55 1.4	$\begin{array}{c} 0.06 \\ 0.14 \end{array}$	78	1.5	0.01
Aluminum Aluminum 14 Si	$\mathrm{K}lpha_2$ $\mathrm{K}eta_1$	1.49	147	1.10	0.43	38	1.9	0.46	88	1.7	0.06
Silicon SiO ₂	$K\alpha_2$	$\begin{array}{c} 1.74 \\ 2.14 \end{array}$	144 175	1.73 2.10	1.6	42	2.1	0.5	42	2.1	0.5
Phosphorus Phosphorus	$K \alpha_2$	2.01	167	2.0	1.7	39	1.95	0.5	37 136	1.9 2.72	0.6
16 S Sulfur	$rac{\mathrm{K}eta_1}{\mathrm{K}lpha_2}$	$\begin{array}{c} 2.46 \\ 2.30 \end{array}$	$\begin{array}{c} 200 \\ 194 \end{array}$	$\begin{array}{c} 2.4 \\ 2.30 \end{array}$	$0.7 \\ 5.8$	$48 \\ 46$	$2.4 \\ 2.3$	$0.17 \\ 0.12$	150		0101
17 Cl Chlorine	$rac{\mathrm{K}eta_1}{\mathrm{K}lpha_2}$	$\begin{array}{c} 2.82 \\ 2.62 \end{array}$	$240 \\ 227$	$\begin{array}{c} 2.88\\ 2.72 \end{array}$	$ \begin{array}{c} 0.5 \\ 4.8 \end{array} $	$\begin{array}{c} 57 \\ 51 \end{array}$	$\begin{array}{c} 2.85 \\ 2.55 \end{array}$	$\begin{array}{c} 0.12 \\ 0.1 \end{array}$	133	2.67	0.02
NH4CI 18 Ar Argon	$rac{\mathrm{K}eta_1}{\mathrm{K}lpha_2}$	$\begin{array}{c} 3.19\\ 2.96\end{array}$	245	2.95	$\begin{array}{c} 0.1 \\ 0.6 \end{array}$				50	3.0	0.01
Air 19 K Potassium	$rac{\mathrm{K}eta_1}{\mathrm{K}lpha_2}$	$3.59 \\ 3.31$	302 282	$\begin{array}{c} 3.62 \\ 3.38 \end{array}$	$\begin{array}{c} 0.6 \\ 6.0 \end{array}$	$\begin{array}{c} 74 \\ 66 \end{array}$	3.7 3.3	$\begin{array}{c} 0.12 \\ 0.1 \end{array}$	$\begin{array}{c} 71 \\ 64 \end{array}$	3.6 3.2	$\begin{array}{c} 0.3 \\ 0.5 \end{array}$
KF 20 Ca	$K\beta_1$ $K\alpha_2$	4.01 3.69	$339 \\ 314$	$4.06 \\ 3.7$	7.5 50.0	80 73	$\begin{array}{c} 4.0 \\ 3.7 \end{array}$	$\begin{array}{c} 0.1 \\ 0.3 \end{array}$	$\frac{80}{71}$	$\begin{array}{c} 4.0\\ 3.6\end{array}$	$\begin{array}{c} 0.5\\ 4.0\end{array}$
$CaCO_3$ 21 Sc	$K\beta_1$	4.46	381 340	4.56	4.0	89 80	$\begin{array}{c} 4.45 \\ 4.1 \end{array}$	$\begin{array}{c} 0.4\\ 0.6 \end{array}$	88 80	$\begin{array}{c} 4.4 \\ 4.0 \end{array}$	$\begin{array}{c} 1.8\\ 12.5\end{array}$
Sc_2O_3 22 Ti	$\mathrm{K} lpha_2$	4.09	409	5.0	16	100	5.0	1.0	98 89	4.9 4.5	8 49
Titanium Titanium 23 V	$K\alpha_2$ $K\beta_1$	4.51 5.43	$374 \\ 456$	$4.6 \\ 5.6$	114	90 111	4.5 5.5	1.3	103	5.40	11
Vanadium Vanadium	$egin{array}{c} \mathrm{K}lpha_2 \ \mathrm{L}\gamma_1 \ \mathrm{L}eta_2 \ \mathrm{L}eta_1 \end{array}$	4.94	416	5.0	87	93	4.65	6.0	93	4.65	00
	$L\alpha_1$	0.52									
24 Cr Chromium	$egin{array}{c} { m L}lpha_2 \ { m K}eta_1 \ { m K}lpha_2 \end{array}$	$5.95 \\ 5.41$	$\begin{array}{c} 500 \\ 450 \end{array}$	$\begin{array}{c} 6.0 \\ 5.5 \end{array}$	$\frac{1.0}{33}$	$\begin{array}{c} 120 \\ 109 \end{array}$	$\begin{array}{c} 6.05 \\ 5.45 \end{array}$	$\begin{array}{c} 1.3 \\ 10.4 \end{array}$	$\begin{array}{c} 118 \\ 105 \end{array}$	5.9 5.4	$\frac{15}{99}$
Chromium 25 Mn Manganese Manganese	$egin{array}{c} { m K}eta_1\ { m K}lpha_2\ { m L}\gamma_1 \end{array}$	$\begin{array}{c} 6.49 \\ 5.90 \end{array}$	491	5.9	7.0	131 119	$\begin{array}{c} 6.55 \\ 5.95 \end{array}$	$\begin{array}{c} 2.0\\ 13.3 \end{array}$	130 118	$\begin{array}{c} 6.5\\ 5.9 \end{array}$	$\begin{array}{c} 17\\104 \end{array}$
26 Fe Iron	$egin{array}{c} { m L}eta_2 \ { m L}eta_1 \ { m L}lpha_1 \ { m K}eta_1 \ { m K}eta_1 \ { m K}eta_2 \end{array}$	$0.65 \\ 0.64 \\ 7.06 \\ 6.40$				$\begin{array}{c} 143 \\ 128 \end{array}$	$7.1 \\ 6.4$	$\begin{array}{c} 2.0\\ 14.0 \end{array}$	$\frac{141}{128}$	7.1	23 148
Iron	$egin{array}{c} { m L} \gamma_1 \ { m L} eta_2 \ { m L} eta_1 \ { m L} lpha_1 \end{array}$	$\begin{array}{c} 0.72 \\ 0.70 \end{array}$		0.72	0.001	140		2.6	149	76	25
27 Co Cobalt Cobalt	$egin{array}{c} \mathrm{K}eta_1\ \mathrm{K}lpha_2\ \mathrm{L}\gamma_1\ \mathrm{L}eta_2 \end{array}$	$\begin{array}{c} 7.65\\ 6.92 \end{array}$				148 139	7.6 6.95	3.0 18	133	6.9	159
28 Ni Nickel	$egin{array}{c} { m L}eta_1\ { m L}lpha_1\ { m K}eta_1\ { m K}eta_1\ { m K}lpha_2 \end{array}$	$0.79 \\ 0.78 \\ 8.26 \\ 7.48$				167 151	8.30 7.50	$\begin{array}{c} 5.0\\ 30.0\end{array}$	166 150	8.3 7.5	33 205

2(C C

GU - -

Ni

TARLE	III.	Continued
TADLE	TTT.	00mmma0a

	So	Source		⁵⁵ Fe			²⁴¹ Am			¹⁰⁹ Cd			
Element	Line	Energy	Channel	Energy	Counts	Channel	Energy	Ccunts	Channel	Energy	Counts		
Nickel	L_{γ_1}												
2120-0-0	$L\beta_2$												
	$L\beta_1$	0.87		0.87	0.001								
	$L\alpha_1$	0.85											
29 Cu	$\mathrm{K} eta_1$	8.9				180	8.9	7.0	180	9.0	39		
Copper	$K\alpha_2$	8.02				163	8.15	40.0	161	8.1	243		
Copper	L_{γ_1}												
	$L\beta_2$												
	$L\beta_1$	0.95		0.95	0.001				50	1.1	0.2		
30 Zn	$K\beta_1$	9.6				194	9.6	8.7	193	9.6	44		
Zinc	$K\alpha_2$	8.6				173	8.65	51.0	174	8.7	274		
Zinc	L_{γ_1}												
	$L\beta_2$												
	$L\beta_1$	1.03		1.03	0.001				62	1.2	0.02		
	$L\alpha_1$	1.01											
31 Ga	$\mathrm{K} eta_1$	10.3				208	10.3	8.9	207	10.3	45.0		
Gallium	$\mathrm{K}\alpha_2$	9.2				187	9.30	51.0	186	9.3	273.0		
Ga_2O_3	L_{γ_1}												
	$L\beta_2$												
	$L\beta_1$	1.12											
	$L\alpha_1$	1.10	89	1.1	0.01								
32 Ge	$\mathrm{K} \beta_1$	11.0				215	11.0	11	215	10.7	44		
Germanium	$K\alpha_2$	9.9				193	9.9	59	193	9.95	273		
Germanium	L_{γ_1}												
	$L\beta_2$												
	$L\beta_1$	1.22							70	1.4	0.02		
	$L\alpha_1$	1.19	111	1.13	0.10								
	$L\alpha_2$												
							9.2	15					
33 As	$K\beta_1$	11.7				237	11.8	13.0	237	11.8	44 .		
Arsenic	$\mathrm{K} \alpha_2$	10.5				213	10.6	68.0	212	10.6	244		
Arsenic	L_{γ_1}												
	$L\beta_2$												
	$L\beta_1$	1.32		1.3	0.001				28	1.4	0.01		
	$L\alpha_1$	1.28											
34 Se	$\mathrm{K}eta_1$	12.5				252	12.6	11.0	252	12.6	49		
Selenium	$K\alpha_2$	11.2				226	11.3	89.0	226	11.3	306		
Selenium	L_{γ_1}												
	$L\beta_2$												
	$L\beta_1$	1.42	127	1.5	0.01				28	1.4	0.01		
	$L\alpha_1$	1.38	113	1.35	0.01								
35 Br	$\mathrm{K}eta_1$	13.3				268	13.4	13.0	269	13.3	49		
Bromine	$\mathrm{K} \alpha_2$	11.9				240	12.0	61.0	242	12.0	254		
KBr	L_{γ_1}												
	$L\beta_2$												
	$L\beta_1$	1.53	132	1.58	0.1	33	1.7	0.50	32	1.6	0.01		
	$L\alpha_1$	1.48	130	1.5	0.10								
37 Rb	$\mathrm{K}eta_1$	15.0				302	15.1	21.0	300	15	47		
Rubidium	$\mathrm{K} lpha_2$	13.3				270	13.5	99.0	268	13.4	274		
RbCl	L_{γ_1}												
	$L\beta_2$												
	$L_{\mathcal{F}_1}$	1.75	145	1.74	0.02	41	2.05	0.07					
	$L\alpha_1$	1.69	142	1.72	0.01	37	1.85	0.06					
38 Sr	$\mathrm{K}eta_1$	15.83				319	15.9	17.0	320	16.0	48		
Strontium	$\mathrm{K} lpha_2$	14.1				285	14.2	86.0	286	14.3	263		
$SrCl_2$	$L\gamma_1$												
	$L\beta_2$												
	$L\beta_1$	1.87	160	1.9	0.3	42	2.1	0.10	40	2.0	0.3		
	$L\alpha_1$	1.80	156	1.8	0.4								
	$L\alpha_2$												
				1.95	0.15								
39 Y	$\mathrm{K} eta_1$	16.7				337	16.8	32.0	340	16.8	53		
Yttrium	$K\alpha_2$	14.9				300	15.0	142.0	303	15.0	303		
Y_2O_3	L_{γ_1}												
	$L\beta_2$												
	$L\beta_1$	2.0	166	2.0	3.5	42	2.1	0.2	52	2.6	0.1		
	$L\alpha_1$	1.9	163	1.9	1.0				46	2.3	0.1		

	So	urce		⁵⁵ Fe			²⁴¹ Am			¹⁰⁹ Cd		
Element	Line	Energy	Channel	Energy	Counts	Channel	Energy	Counts	Channel	Energy	Counts	
40 Zr	$\mathrm{K} eta_1$	17.7				356	17.8	34.0	358	17.8	51	
Zirconium	K_{α_2}	15.7				317	15.9	162.0	319	15.9	305	
Zirconium	L_{γ_1}	2.3	192	2.3	0.5						~ /	
	$L\beta_2$	2.2	184	2.2	0.7				50	2.5	0.4	
	$L\beta_1$	2.1	175	2.1	0.7	43	2.15	0.01				
	$L\alpha_1$	2.04	170	2.0	0.1							
	$L\alpha_2$											
	Peak		176	2.1	0.7							
41 Nb	$K\beta_1$	18.6				369	18.8	30	370	18.6	48	
Niobium	$K\alpha_2$	16.5				328	16.7	149	328	16.6	274	
Niobium	Lyi	2.46	205	2.5	0.10	54	2.7	0.2	50	2.5	0.3	
	LB2	2.37	198	2.4	0.50							
	LBI	2.25	186	2.3	0.52							
	Lou	2.16	180	2.2	0.43				41	2.1	0.3	
42 Mo	KB.	19.6				395	19.7	31.0	398	19.7	50	
Molyhdenum	Ka	17 4				351	17.5	159.0	354	17.5	281	
Molybdenum	I.a.	2.62	218	2.6	0.7	52	2.6	0.1	59	2.9	0.03	
THOI Y DUCHUIII	T.R.	2.52	210	2.5	0.7	<u> </u>	2.0					
	T_{R}	2.4	200	2.4	2.4				49	2.5	0.02	
		2.1	102	2.2	2.5	46	2.3	0.20	20			
11 D.	TCO.	2.0	184	4.0	2.0	427	21 7	6.8	435	21.7	27.2	
TT KU	\mathbf{L}_{ρ_1}	10 2				280	10 4	38.0	386	19.3	150	
(NIII) D.C.	$\Gamma \alpha_2$	2 06 TA'9	950	2 0	05	509	2 0	0.02	58	2.9	0 01	
$(1NH_4)_2$ KuCl ₅	$L\gamma_1$	2.90	200	0.0	1 2	59	2.9	0.04	00	4.0	0.01	
	$L\beta_2$	2.84	232	4.8	1.0	06	4.0	0.1	51	26	0.6	
	$L\beta_1$	2.68	223	2.7	5.5	~ ~	0 57	0.05	91	2.0	0.0	
	$L\alpha_1$	2.55	216	2.59	2.5	55	2.57	0.20	450	00 7	0.0	
45 Rh	$K\beta_1$	22.7				459	22.9	14.00	400	22.1	9.0	
Rhodium	$K\alpha_2$	20.1				407	20.3	76.00	410	20.1	11.0	
(NH ₄) ₃ RhCl ₆	L_{γ_1}	3.14	265	3.2	0.5	61	3.1	0.3	64	3.2	0.01	
	$L\beta_2$	3.01	250	3.0	1.5	12712 - N			20	0.0		
	$L\beta_1$	2.83	233	2.8	3.5	57	2.9	0.02	58	2.9	0.2	
	$L\alpha_1$	2.70	225	2.7	5.0	55	2.7	0.2	53	2.6	0.03	
	$L\alpha_2$	2.69										
									461	23.1	12	
46 Pd	$K\beta_1$	23.9				480	24.0	20.0	484	24.1	15	
Palladium	$K\alpha_2$	21.2				426	21.3	107.0	429	21.2	82	
Palladium	L_{γ_1}	3.3	275	3.3	0.8	66	3.3	0.1	65	3.3	0.1	
	$L\beta_2$	3.17	255	3.1	2.5	63	3.1	0.1	62	3.1	0.4	
	$L\beta_1$	2.99	239	3.0	6.0				60	3.0	1.6	
	$L\alpha_1$	2.84	236	2.8	8.0	56	2.8	0.2	54	2.7	2.0	
	La,											
	2					291	24.6	3.5	449	22.5	4.6	
47 A.o.	$\mathbf{K}_{\mathcal{B}_1}$	25.0				304	25.0	40.0	507	25.3	2.5	
Silver	Ka	22.0				247	22.1	200.0	484	22.4	15.0	
Silver	Loui	3.52	294	3.5	1	72	3.6	0.3	70	3.5	0.1	
	T.R.	3 35	280	3.4	2	67	3.3	0.3	67	3.3	0.2	
	T.R.	3 15	255	3.1	6	64	3.2	1.0	64	3.2	1.2	
	Lor	3.0	243	2.9	10	58	2.9	1.0	61	3.1	1.3	
	Trai	0.0	210	4.0	10	00	A.0	1.0	416	20.8	1.5	
	$\mathbf{L}\mathcal{U}_2$					314	25 7	7 0	108	25.5	0.5	
LO 01	TZO	96 1				50U	26.2	26.0	122	26 1	1.0	
40 Ua	r_{z}	20.1				049 AGG	20.4	128 8	471	23 2	6.0	
Cadmium	$\Delta \alpha_2$	23.0	200	9 0	0.6	400	20.0	140.0	7/	3 7	0.1	
Cadmium	$L\gamma_1$	5.1	320	5.8	0.0	74	0.1 9 F	0.9	70	2 5	0.1	
	$L\beta_2$	3.5	298	3.0	2.2	70	0.0	1.4	10	0.0	0.4	
	$L\beta_1$	3.3	284	3.4	7.0	66	5.3	0.1	60	0.0	0.5	
	$L\alpha_1$	3.1	269	3.2	12.0	62	3.1	0.2	01	0.1	0.7	
	$L\alpha_2$						00.0		100	00.0	1.0	
	_					338	26.8	4.5	136	26.8	1.0	
49 In	$\mathrm{K}eta_1$	27.3				351	27.6	21.0	141	27.3	1.1	
Indium	$\mathrm{K} \alpha_2$	24.0				486	24.3	136.0	83	24.1	5.0	
Indium	L_{γ_1}	3.9	325	3.9	1.0	78	3.9	0.9	78	3.9	0.1	
4 CONTRACTOR 100	$L\beta_{2}$	3.7	308	3.7	3.0	75	3.7	0.6	74	3.7	0.1	
	LB	3.5	292	3.5	8.0	70	3.5	1.3	69	3.5	0.8	
	Lou	3.3	276	3.3	11.5	67	3.3	1.8	63	3.2	1.5	
	Los	0.0	210									
	and 2					364	28.2	6.0	162	28.1	0.3	
			347	4 1	0.2	001					100 BIEN	
			0.11	* • *	0.4							
	Contraction of the Contract of		the second se		the second second second second second							

TABLE III. Continued

TABLE

E]

50 Tin Tin

51 Ant Ant

> 52 Te Te

ļ

ļ

	So	urce		⁵⁵ Fe			²⁴¹ Am			¹⁰⁹ Cd	
Element	Line	Energy	Channel	Energy	Counts	Channel	Energy	Counts	Channel	Energy	Counts
50 Sn Tin Tin	$egin{array}{c} { m K}eta_1\ { m K}lpha_2\ { m L}\gamma_1\ { m L}eta_2\ { m L}eta_1\ { m L}eta_1\ { m L}lpha_1\ { m L}lpha_1\ { m L}lpha_2 \end{array}$	$28.4 \\ 25.0 \\ 4.1 \\ 3.9 \\ 3.6 \\ 3.4$	$355 \\ 334 \\ 314 \\ 383$	$4.1 \\ 3.9 \\ 3.75 \\ 3.5$	0.5 1.3 12.0 18.0	376 310 82 78 72 68	$28.6 \\ 25.3 \\ 4.1 \\ 3.9 \\ 3.6 \\ 3.4 \\ 20.4$	$\begin{array}{c} 35.0 \\ 173.0 \\ 0.3 \\ 0.4 \\ 0.7 \\ 0.9 \end{array}$	171 104 82 78 72 67	28.5 25.2 4.1 3.9 3.7 3.4 20.2	$ \begin{array}{r} 1.5 \\ 5.0 \\ 0.1 \\ 0.1 \\ 2.0 \\ 1.5 \\ 0.4 \end{array} $
51 Sb Antimony Antimony	$egin{array}{c} { m K}eta_1\ { m K}lpha_2\ { m L}\gamma_1\ { m L}eta_2\ { m L}eta_1\ { m L}lpha_1\ { m L}lpha_2 \end{array}$	$29.7 \\ 26.1 \\ 4.3 \\ 4.1 \\ 3.8 \\ 3.6$	366 345 326 307	4.4 4.2 3.9 3.7	$0.5 \\ 3.5 \\ 14.0 \\ 19.0$	404 335 86 80 78 72	29.424.739.229.826.34.34.03.83.6	$\begin{array}{c} 7.0 \\ 4.0 \\ 6.0 \\ 36 \\ 125 \\ 0.2 \\ 0.3 \\ 1.3 \\ 1.8 \end{array}$	403 334 93 83 76 70	$29.8 \\ 26.3 \\ 4.7 \\ 4.1 \\ 3.8 \\ 3.5$	$\begin{array}{c} 0.9 \\ 4.0 \\ 0.1 \\ 0.4 \\ 1.5 \\ 1.3 \end{array}$
52 Te Tellurium TeO2	$egin{array}{c} { m K}eta_1 \ { m K}lpha_2 \ { m L}\gamma_1 \ { m L}eta_2 \ { m L}eta_1 \ { m L}lpha_1 \ { m L}lpha_1 \end{array}$	31.0 27.2 4.57 4.3 4.03 3.77 3.76	385 361 340 319	$4.5 \\ 4.3 \\ 4.0 \\ 3.8$	$0.5 \\ 2.5 \\ 8.0 \\ 12.0$	$\begin{array}{c} 415 \\ 427 \\ 335 \\ 92 \\ 88 \\ 80 \\ 74 \end{array}$	30.7 31.2 27.6 4.6 4.4 4.0 3.7	$\begin{array}{c} 6.0 \\ 27.0 \\ 132.0 \\ 0.2 \\ 0.4 \\ 1.0 \\ 1.5 \end{array}$	210 238 160 93 83 82 77	30.5 31.2 27.4 4.5 4.2 4.1 3.8	$\begin{array}{c} 0.1 \\ 0.2 \\ 3.0 \\ 0.1 \\ 0.5 \\ 1.5 \\ 0.9 \end{array}$
53 I Iodine Iodine	$egin{array}{c} { m K}eta_1 \ { m K}lpha_2 \ { m L}\gamma_1 \ { m L}eta_2 \ { m L}\beta_1 \ { m L}eta_1 \ { m L}lpha_1 \ { m L}lpha_1 \end{array}$	$32.3 \\ 28.3 \\ 4.8 \\ 4.5 \\ 4.2 \\ 3.9 \\ 2.0 \\ 10$	$403 \\ 375 \\ 356 \\ 332$	$4.9 \\ 4.5 \\ 4.3 \\ 4.0$	$1.3 \\ 3.8 \\ 13 \\ 18$	$\begin{array}{c} 441 \\ 453 \\ 379 \\ 97 \\ 93 \\ 83 \\ 76 \end{array}$	31.9 32.5 28.6 4.9 4.6 4.2 3.8	$5.5 \\ 24.0 \\ 114.0 \\ 0.4 \\ 0.6 \\ 1.5 \\ 2.5$	$237 \\ 250 \\ 174 \\ 98 \\ 94 \\ 82 \\ 76$	$31.8 \\ 32.4 \\ 28.7 \\ 4.9 \\ 4.7 \\ 4.1 \\ 3.8$	$0.1 \\ 0.6 \\ 4.0 \\ 0.3 \\ 0.4 \\ 2.0 \\ 1.8$
55 Cs Cesium CsCl	$egin{array}{c} { m K}eta_1 & { m K}lpha_2 & { m L}\gamma_1 & { m L}eta_2 & { m L}eta_1 & { m L}lpha_1 & { m$	35.0 30.6 5.28 4.9 4.6 4.3 4.2	444 406 380 362	5.3 4.9 4.6 4.3	1.0 4.0 15.0 20.0	469 319 235 105 98 92 83	$33.2 \\ 35.2 \\ 31.1 \\ 5.3 \\ 4.9 \\ 4.6 \\ 4.2$	5.0 23.0 106.0 0.8 1.5 2.5 2.5	$262 \\ 303 \\ 322 \\ 106 \\ 98 \\ 92 \\ 85$	33.2 35.1 31.1 5.3 4.9 4.6 4.3	$\begin{array}{c} 0.1 \\ 0.8 \\ 3.5 \\ 0.3 \\ 0.6 \\ 2.5 \\ 2.5 \end{array}$
56 Ba Barium BaCO3	$egin{array}{c} { m K}eta_1 \ { m K}lpha_2 \ { m L}\gamma_1 \ { m L}eta_2 \ { m L}eta_1 \ { m L}lpha_1 \ { m L}lpha_1 \ { m L}lpha_2 \end{array}$	36.4 31.8 5.5 5.2 4.8 4.5 4.4	467 435 407 377	$5.5 \\ 5.2 \\ 4.8 \\ 4.5$	$0.4 \\ 5.0 \\ 15.0 \\ 25.0$	338 348 261 110 101 95 88	36.1 36.6 32.3 5.5 5.1 4.7 4.4	5.0 20.0 92.0 1.0 0.3 3.0 0.6	322 332 240 115 102 97 88	36.1 36.6 32.0 5.7 5.1 4.8 4.4	$\begin{array}{c} 0.2 \\ 0.6 \\ 3.0 \\ 0.3 \\ 1.0 \\ 6.0 \\ 5.0 \end{array}$
57 La Lanthanum LaB ₆	$egin{array}{c} \mathbf{K}eta_1 & \mathbf{K}eta_2 & \mathbf{L}\gamma_1 & \mathbf{L}eta_2 & \mathbf{L}eta_1 & \mathbf{L}eta_2 & \mathbf{L}eta_1 & \mathbf{L}eta_1 & \mathbf{L}eta_2 & \mathbf{L}eta_1 & \mathbf{L}eta_2 & \mathbf{L}eta_2 & \mathbf{L}eta_1 & \mathbf{L}eta_2 & L$	$37.80 \\ 33.2 \\ 5.79 \\ 5.38 \\ 5.04 \\ 4.65 \\ 4.64$	$ 488 \\ 451 \\ 425 \\ 389 $	$5.8 \\ 5.4 \\ 5.1 \\ 4.7$	$3.0 \\ 6.0 \\ 20.0 \\ 27.0$	$368 \\ 357 \\ 270 \\ 115 \\ 107 \\ 100 \\ 92$	37.4 37.8 33.5 5.7 5.4 5.0 4.6	$\begin{array}{c} 4.0 \\ 17.0 \\ 83.0 \\ 0.8 \\ 1.5 \\ 2.5 \\ 3.0 \end{array}$	$353 \\ 356 \\ 268 \\ 115 \\ 106 \\ 100 \\ 91$	37.6 38.1 33.6 5.8 5.3 5.0 4.6	$\begin{array}{c} 0.2 \\ 0.6 \\ 3.0 \\ 0.4 \\ 1.5 \\ 5.0 \\ 5.0 \end{array}$
58 Ce Cerium Ce ₂ O ₃	$egin{array}{c} { m K}eta_1 \ { m K}lpha_2 \ { m L}\gamma_1 \ { m L}eta_2 \ { m L}eta_1 \ { m L}eta_1 \ { m L}lpha_1 \end{array}$	$39.3 \\ 34.3 \\ 6.1 \\ 5.6 \\ 5.26 \\ 4.84$	$ \begin{array}{r} 494 \\ 470 \\ 441 \\ 405 \end{array} $	4.13 5.9 5.6 5.3 4.85	1.0 3.0 7.0 2.2 32.0	$380 \\ 406 \\ 306 \\ 124 \\ 112 \\ 106 \\ 97$	39.0 39.5 34.8 6.2 5.6 5.3 4.8	$5.0 \\ 17.0 \\ 49.0 \\ 0.4 \\ 1.2 \\ 3.0 \\ 4.0$	380 412 290 123 113 106 98	$\begin{array}{c} 39.0 \\ 39.6 \\ 34.4 \\ 6.2 \\ 5.6 \\ 5.3 \\ 4.9 \end{array}$	$\begin{array}{c} 0.2 \\ 0.3 \\ 1.5 \\ 0.3 \\ 1.5 \\ 8.3 \\ 7.0 \end{array}$
	$L\alpha_2$	4.82				$427 \\ 291$	$\begin{array}{c} 40.3\\ 34.6\end{array}$	$\begin{array}{c} 3.0\\20.0\end{array}$	$\begin{array}{c} 412\\ 301 \end{array}$	$\begin{array}{c} 40.6\\ 35.0\end{array}$	$\begin{array}{c} 0.5 \\ 2.5 \end{array}$

TARIE III. Continued

		-	~	22	- 1
T	A	R	ι.	E.	1
	1-3	ور	~	~	
~					

68

Erbiun

 $\mathrm{Er}_{2}\mathrm{O}_{3}$

69

Thuli

Tm2(

70

Ytt

Tb2

71

Lι

Lı

7

I

Elen

1C9Cd

Energy

Channel

Counts

12.0420 41.20.240.743541.059 \mathbf{Pr} $K\beta_1$ 323 36.22.5333 36.2 43.0Praseodymium $K\alpha_2$ 35.50.20.3126 6.4 126 6.3 6.3 Pr_2O_3 $L\gamma_1$ 5.92.01.0118 5.8548 5.81.11185.8 $L\beta_2$ 9.45.55.51.0 111 5.5 $L\beta_1$ 5.5456 15.0110 423 5.03 100 5.02.0100 5.09.05.03 10.0 $L\alpha_1$ $L\alpha_2$ 5.020.142.144242.1456 3.0 1.3 315 35.7315 35.7 20.00.02 42.510.045042.5 $K\beta_1$ 42.3465 60 Nd 370 37.5 20.0 352 37.0 0.06 36.8 Neodymium $K\alpha_2$ 0.31336.6 0.3 Nd_2O_3 L_{γ_1} 6.6 132 6.6 6.0 0.3 1216.11216.1 0.9 $L\beta_2$ 9.0 8.3 3.0 1155.7 $L\beta_1$ 4725.7116 5.85.7 5.25.29.0 5.244010.0 105 5.23.0 104 $L\alpha_1$ $L\alpha_2$ 5.23.0 471 43.60.1235437.7 34037.010.0 $K\beta_1$ 308 9.0 308 45.4 0.445.462 Sm 45.4 202 40.1 2.0202 40.144.0Samarium $K\alpha_2$ 40.11.2143 7.2 1.8 7.2144 7.2 Sm_2O_3 L_{γ_1} 5.0131 6.6 $L\beta_2$ 6.6 135 6.6 3.0 124 6.27.01236.219.06.2 $L\beta_1$ 111 5.618.0 5.6112 5.68.0 La₁ $L\alpha_2$ 5.67.51.27.5149 149 0.8 1.2190 39.526.019039.538.41.3168332 46.6 2.3330 46.50.10.40343 10 141 47.1 $K\beta_1$ 47.0 47.1 63 Eu 28 41.21.935 40.9 218 40.8Europium $K\alpha_2$ 0.8 1521.6 $L\gamma_1$ 7.48 149 7.4 7.6 Eu_2O_3 6.8 1.0 140 7.04.0137 6.84 $L\beta_2$ 16.0 7.0 130 6.5129 6.4 $L\beta_1$ 6.46 5.845.05.810.0 117 5.816.0 5.85496 117 $L\alpha_1$ 1.0 5.821155.7 $L\alpha_2$ 2.2231 41.560.0 43741.8 48.23.0 166 48.30.1368 48.7 0.548.611.5173 412 64 Gd $K\beta_1$ 48.742.31.7 42.036.158 Gadolinium 42.3302 K_{α_2} 1.07.8 157 7.91.51577.8 Gd_2O_3 $L\gamma_1$ 7.27.1141 7.13.9 143 5.0 $L\beta_2$ 1356.8 216.7 6.0 134 $L\beta_1$ 6.7 20 6.0 10.0 121 6.1 6.1 2.0120 $L\alpha_1$ 6.0 5122.0110 5.56.03 $L\alpha_2$ 43.02.0287 43.351.060 435 51.7 3.0 20550.20.210.0 208 50.4 0.550.5410 50.4 65 Tb $K\beta_1$ 28.088 43.71.0Terbium $K\alpha_2$ 43.7277 43.8 8.2164 1.51628.1 1.48.1 $\mathrm{Tb}_{2}\mathrm{O}_{3}$ $L\gamma_1$ 7.95.0147 7.4 3.0 1587.4LB2 140 7.0 6.0 148 7.424.07.0 $L\beta_1$ 7.026.010.0140 6.3 6.27 125 $L\alpha_1$ 2.2125 6.3 6.25 $L\alpha_2$ 2.029147.0 90 44.5 44.50.1441 52.12.023551.852.2 8.0 241 52.20.4444 52.266 Dy $K\beta_1$ 45.21.026.0 120 306 45.3 $K\alpha_2$ 45.2Dysprosium 169 8.5 2.01.88.4 168 8.4 Dy2O3 $L\gamma_1$ 7.6 5.01527.6 4.01537.6 $L\beta_2$ 8.0 145 7.3 26.01457.3 7.2 $L\beta_1$ 130 6.525.0130 6.5 12.0 $L\alpha_1$ 6.5116 5.8 2.56.46 $L\alpha_2$ 47.01.046.0346 46.1120 0.147553.7 2.527353.8 8.0 27953.90.327753.4 $K\beta_1$ 53.967 Ho 134 46.7 0.8 133 46.722 Holmium $K\alpha_2$ 46.7 2.0176 8.8 2.58.7 1758.7 Ho₂O₃ $L\gamma_1$

⁵⁵Fe

Channel Energy Counts

²⁴¹Am

Counts

Channel Energy

TABLE III. Continued

Element

Source

Energy

Line

	So	urce		⁵⁵ Fe			²⁴¹ Am			¹⁰⁹ Cd	
Element	Line	Energy	Channel	Energy	Counts	Channel	Energy	Counts	Channel	Energy	Counts
	Lßa	79				157	7.9	4.0	159	8.0	6.0
	$L\beta_{1}$	7.5				151	7.6	11.0	151	7.5	27
	$L\alpha_1$	6.7				134	6.7	14.0	135	6.7	26
	$L\alpha_2$	6.6				150	17 E	26 0	120	6.0 47.6	2.5
						306	55 3	2.0	309	55.5	0.1
68 F.r	KB.	55.7				315	55.7	6.7	315	55.7	0.3
Erbium	$K\alpha_2$	48.2				164	48.2	20	165	48.2	0.8
Er ₂ O ₃	L_{γ_1}	9.1				183	9.1	1.5	183	9.1	2.5
	$L\beta_2$	8.1				163	8.1	3.0	100	8.5	32.0
	$L\beta_1$	7.8				139	7.9 7.0	16.0	139	6.9	30.0
	$L\alpha_1$	6.90				100	110	2010	126	6.3	3.0
		0100				182	49.1	33.0	186	49.3	1.3
						344	57.2	1.7	349	57.4	0.1
69 Tm	\mathbf{K}_{eta_1}	57.6				348	57.4	5.5	351	57.5 40.8	0.5
Thulium	$K\alpha_2$	49.8				195	49.7 9.5	1.5	190	5.9	2.8
$1 \text{ m}_2 \text{O}_3$	$L\gamma_1$ $L\beta_2$	9.± 8.4				169	8.4	6.0	170	8.5	8.0
	$L\beta_{1}^{2}$	8.1				162	8.1	19.0	163	8.1	35.0
	$L\alpha_1$	7.2				144	7.2	20.0	144	7.2	34.0
	$L\alpha_2$	7.13				015	50 7	20.0	318	6.4 50.0	3.0 2.0
						215 385	50.7 59.2	1.6	385	59.2	0.2
70 Vb	KB.	59 4				455	62.8	0.2	386	59.3	0.2
Ytterbium	$K\alpha_2$	51.3				258	52.9	1.2	250	51.4	1.2
Tb_2O_3	L_{γ_1}	9.8				197	9.8	1.0	198	9.9	2.0
	$L\beta_2$	8.7				174	8.7	0.9	176	8.8	40.0
	$L\beta_1$	8.4				170	$8.0 \\ 7.5$	5.0	149	7.4	39.0
	$L\alpha_1$	7.3				100	1.0	0.0	134	6.7	3.0
	$\square a_2$	1.0							249	52.4	1.4
								0.1	420	61.0	0.3
71 Lu	$K\beta_1$	61.3				453	62.6	0.1	428 260	53.0	0.2
Lutetium	$K\alpha_2$	53.0				206	10.3	0.8	$200 \\ 205$	10.2	1.8
Lu_2O_3	$L\gamma_1$ $L\beta_2$	9.0				181	9.0	1.0	182	9.1	6.0
	$L\beta_1$	8.7				176	8.8	6.0	175	8.7	40.0
	$L\alpha_1$	7.7				155	7.7	4.0	154	7.7	40.0
	$L\alpha_2$	7.6							130	0.8 64 5	1.0
									402	63.1	0.3
72. Hf	$K\beta_1$	63.2							263	63.3	0.2
Hafnium	$K\alpha_2$	54.6				107	54.6	0.1	93	54.7	0.5
HfO_{2}	L_{γ_1}	10.5				212	10.6	0.7	213	10.6	1.5 7 0
	$L\beta_2$	9.3				183	9.5	7.0	180	9.0	35
	$L\beta_1$ $L\alpha_1$	9.0 7.9				159	8.0	5.0	159	8.0	35
	$L\alpha_2$	7.8							144	7.2	2.0
						255	52.7	1.0	100	FC 0	0.75
						118	55.9	0.1	420	65.0	0.15
79 To	Ke.	65 2				206	64.8	0.01	308	65.1	0.2
70 IA Tentelum	$K \alpha_n$	56.3				121	56.5	0.1	126	56.3	0.8
Tantalum	L_{γ_1}	10.9				221	11.1	0.6	220	11.0	2.0
	$L\beta_2$	9.6				193	9.6	1.2	196	9.8	12.0
	$L\beta_1$	9.3				189	9.5	8.0	164	9.4 8.2	50.0
	$L\alpha_1$	8.1				104	0.4	0.0	196	7.3	4.0
	$\Box \alpha_2$	8.0				242	52.1	0.2	153	57.6	0.9
						257	52.8	0.2			
							59.5	0.4^{a}	010	67 5	0.2
74 W	\mathbf{K}_{β_1}	67.2							349 161	58 0	0.2 0.5
Tungsten	$K\alpha_2$	58.U				227	11.3	0.6	228	11.4	2.5
- ungsten	$L\beta_{2}$	10.0				199	10.0	0.8	202	10.1	10.0
	$L\beta_1$	9.7				195	9.8	8.0	195	9.7	44
	$L\alpha_1$	8.4				170	8.5	6.0	164	8.5	45

-

TABLE III. Co	ntinue	ed
---------------	--------	----

	So	Source		⁵⁵ Fe			²⁴¹ Am		¹⁰⁹ Cd		
Element	Line	Energy	Channel	Energy	Counts	Channel	Energy	Counts	Channel	Energy	Counts
	$L\alpha_2$	8.3							150 189	7.5	3.0
							59.5	0.4	109	00.0	0.7
75 Re	$\mathrm{K}eta_1$	69.3							390	69.5	0.1
Rhenium	$\mathrm{K} lpha_2$	59.7				241	59.5	0.4	197	59.8	0.6
NH4ReO4	L_{γ_1}	11.7				236	11.8	0.6	230	11.8	3.0
	$L\beta_2$	10.2				200	10.3	7.0	204	10.2 10.1	40
		8.7				174	8.7	6.0	147	8.7	45
	$L\alpha_2$	8.6							154	7.7	3.0
						223	61.1	0.06	225	61.2	0.65
76 Os	$K\beta_1$	71.4				011	<u> </u>	0.00	429	71.4	0.01
Osmium	$K\alpha_2$	61.5				244	62.2 19.1	0.20	230 244	12.2	3.0
$(NH_4)_2OsCl_6$	$L\gamma_1$	12.1				241	12.1 10.5	3.0	212	10.6	8.0
	$L\rho_2$ $L\beta_1$	10.0				206	10.3	6.0	206	10.3	40.0
	$L\alpha_1$	8.9				180	9.0	6.0	179	9.0	42.0
	$L\alpha_2$	8.8							160	8.0	2.5
									263	63.2	0.4
77 Ir	$K\beta_1$	73.5				249	69 1	0.20	208 64	63 3	0.01
Iridium	$K\alpha_2$	63.3				242	12.7	0.20 0.62	253	12.6	4.0
(1114)311016	L_{β_2}	10.9				220	11.0	1.0	218	10.9	6.0
	$L\beta_1$	10.7				217	10.9	6.5	214	10.7	40.0
	$L\alpha_1$	9.2				185	9.3	6.0	185	9.2	45.0
	$L\alpha_2$	9.0							164	8.2	2.0
	TZO								98 156	54.9 76 1	0.5
78 Pt	$K\beta_1$	75.7				242	62 1	0.2	121	65.0	0.1
Platinum	Lizza	12.9				258	12.9	0.7	262	13.1	4.0
1 Rolling	$L\beta_2$	11.2				224	11.2	0.8	224	11.2	6.0
	$L\beta_1$	11.0				217	10.9	7.2	220	11.0	40
	$L\alpha_1$	9.5				185	9.5	7.3	190	9.5	43.0
	$L\alpha_2$	9.4							128	66.9	0.4
									372	78.6	0.05
79 Au	$K\beta_1$	78.0							392	78.1	0.1
Gold	$K\alpha_2$	67.0							158	67.0	0.3
Gold	L_{γ_1}	13.4				271	13.6	1.5	271	13.4	8.0
	$L\beta_2$	11.5				231	11.6	15	230	11.0 11.4	05.0
	$L\beta_1$	11.4				196	9.8	14.0	195	9.7	71.0
	La	9.6				100	0.0	11.0	177	8.6	4
	2002	0.0	180	2.3	2.0				198	69.0	0.5
									160	8.0	0.8
									287	14.3	0.4
80 Hg	$K\beta_1$	80.3							434 200	69 0	0.10 0.25
Mercury	$K\alpha_2$	08.9 13.8				279	13.9	1.5	279	13.9	7.5
ligoi	$L\beta_{2}$	11.9				239	11.9	0.4	238	11.9	60
	$L\beta_1$	11.8				234	11.7	1.4	216	10.8	1.5
	$L\alpha_1$	10.0				202	10.1	12.0	200	10.0	61
	$L\alpha_2$	9.9							198	9.0	4 2 0
									270	13 5	0.5
									285	14.2	2.5
									297	14.3	0.5
									224	71.2	0.35
									465	83.5	0.1
81 Tl	$\mathrm{K}eta_1$	82.6							479	83.0	0.10
Thallium	$\mathrm{K}\alpha_2$	70.8				000	14 5	1 5	224	11.4	0.5
$\mathrm{Tl}_2\mathrm{CO}_3$	L_{γ_1}	14.3				289	14.0 19 4	1.0	290	12.3	65.0
	$L\beta_2$ L.G.	12.5 12.2				240	12.9	1.6	221	11.1	1.8
		10.3				207	10.4	14.0	207	10.3	65
	$L\alpha_2$	10.1							184	9.2	4.0
									161	8.1	0.6
									205	13.2	0.0
B											

	So	urce		⁵⁵ Fe			²⁴¹ Am			¹⁰⁹ Cd	
Element	Line	Energy	Channel	Energy	Counts	Channel	Energy	Counts	Channel	Energy	Counts
82 Pb Lead Lead	$egin{array}{c} { m K}eta_1 \ { m K}lpha_2 \ { m L}\gamma_1 \ { m L}eta_2 \ { m L}eta_1 \ { m L}lpha_1 \ { m L}lpha_1 \ { m L}lpha_2 \end{array}$	$\begin{array}{c} 84.9\\72.8\\14.8\\12.6\\12.0\\10.6\\10.5\end{array}$	200 230 310 358 130	2.4 2.8 3.7 4.3 1.56	$3.5 \\ 0.3 \\ 0.1 \\ 0.1 \\ 0.15$	377 331 298 255 248 213	$14.9 \\ 12.7 \\ 12.4 \\ 10.6 \\ 9.3 \\ 15.9 \\ 15.3 \\ 1 \\ 11.5$	$2.0 \\ 20.0 \\ 0.3 \\ 16.0 \\ 0.7 \\ 0.2 \\ 0.9 \\ 0.5$	249 77 299 250 229 213 184 128 306 277	$\begin{array}{c} 85.0\\ 73.3\\ 14.8\\ 12.6\\ 11.4\\ 10.6\\ 9.2\\ 75.2\\ 15.3\\ 13.8 \end{array}$	$\begin{array}{c} 0.05\\ 0.20\\ 8.0\\ 2.0\\ 75\\ 4.0\\ 0.20\\ 3.2\\ 0.3\\ \end{array}$
83 Bi Bismuth Bismuth	$egin{array}{c} \mathrm{K}eta_1\ \mathrm{K}lpha_2\ \mathrm{L}\gamma_1\ \mathrm{L}eta_2\ \mathrm{L}eta_1\ \mathrm{L}lpha_1\ \mathrm{L}lpha_1\ \mathrm{L}lpha_2 \end{array}$	$\begin{array}{c} 81.3 \\ 74.8 \\ 15.2 \\ 13.0 \\ 13.0 \\ 10.8 \\ 10.7 \end{array}$	010	0.54	1.5	421 369 308 262 263 219	81.0 78.4 15.4 13.1 13.1 10.9	$0.02 \\ 0.01 \\ 1.5 \\ 1.5 \\ 19.0 \\ 15 \\ 2.0$	89 307 262 235 217 189 127	$74.4 \\ 15.3 \\ 13.1 \\ 11.7 \\ 10.8 \\ 9.4 \\ 6.3$	0.01 9.2 76 2.0 68 3.5 12.0
90 Th	$\mathrm{K}eta_1$	105.6	$212 \\ 232 \\ 317 \\ 388 \\ 462$	$2.54 \\ 2.78 \\ 3.80 \\ 4.55 \\ 5.54$	$\begin{array}{c} 1.5 \\ 0.16 \\ 0.15 \\ 0.10 \\ 0.15 \end{array}$	125	0.4	2.0	127 140 235 298 315	7.0 11.7 14.9 15.7	2.0 2.0 0.6 3.0
Thorium THO2	$egin{array}{c} { m K} lpha_2 \ { m L} \gamma_1 \ { m L} eta_2 \ { m L} eta_1 \ { m L} lpha_1 \ { m L} lpha_1 \ { m L} lpha_2 \end{array}$	$89.9 \\ 19.0 \\ 15.6 \\ 16.2 \\ 13.0 \\ 12.8$				383 315 327 261 223 58 292 345 393	$19.1 \\ 15.7 \\ 16.3 \\ 13.1 \\ 11.1 \\ 2.9 \\ 14.6 \\ 17.2 \\ 19.7$	3.6 12 28 27 1.5 1.0 0.8 0.2 1.5	383 315 326 261 223 58 292 345 395	$19.1 \\ 15.7 \\ 16.3 \\ 13.1 \\ 11.1 \\ 2.9 \\ 14.6 \\ 17.2 \\ 19.7$	$13 \\ 30 \\ 77 \\ 97 \\ 5.6 \\ 4 \\ 2.6 \\ 0.7 \\ 4.0$
92 U Uranium UO ₂ (NO ₃)2	$egin{array}{c} { m L1} & { m Llpha} & { m Ln} & { m Leta_2} & { m Leta_2} & { m Leta_1} & { m Leta_5} & { m Leta_1} & { m Leta_5} & { m Leta_1} & { m Leta_3} & { m Leta_1} & { m Leta_3} & { m Leta_3} & { m Leta_4} & { m Mlpha_2} & { m Mlpha_2} & { m Mlpha_2} & { m Matrix} & { $	$\begin{array}{c} 11.6\\ 13.6\\ 15.4\\ 15.8\\ 16.5\\ 17.2\\ 19.5\\ 20.2\\ 20.8\\ 21.7\\ 3.05 \end{array}$		3.05	2.5	232272308316330345391404416434	$\begin{array}{c} 11.6\\ 13.6\\ 15.4\\ 15.8\\ 16.5\\ 17.2\\ 19.5\\ 20.2\\ 20.8\\ 21.7 \end{array}$	$\begin{array}{c} 1.3\\ 22.0\\ 0.6\\ 0.6\\ 9.0\\ 12\\ 0.2\\ 3.0\\ 1.3\\ 0.2\\ \end{array}$	$\begin{array}{c} 232\\ 232\\ 308\\ 316\\ 330\\ 330\\ 391\\ 404\\ 416\\ 434\\ \end{array}$	$\begin{array}{c} 11.6\\ 13.6\\ 15.4\\ 15.8\\ 16.5\\ 17.2\\ 19.5\\ 20.2\\ 20.8\\ 21.7\\ 3.05 \end{array}$	5.598.02.22.628531.0114.81.02.6

TABLE III. Continued

^a Source.

It then appeared necessary to prepare a systematic tabulation of the spectral data by element and by energy before any attempt was made to develop quantitative analytical methods. Accordingly, we irradiated 71 elements by each of our three sources for 1000 sec each and tabulated the peaks by energy (as determined by the internal standardization provided on the Kevex unit) and by counts per second (as determined by a Teletype read-out from the memory storage). These data were tabulated numerically in terms of the elements in Table III and graphically as a function of energy in Fig. 3, a to i.

C. Sensitivity Data by Element and by Energy

These data have been extremely helpful in our determination of the elements in a wide range of museum objects. The tables and graphs provide the following information:

1. The identification of the most probable elements responsible for the peaks found in a spectrum. For example, referring to Fig. 3g, Ge, Hg, Au, Yb, Re, and W appear at or near 10 kV. To be Ge there would have to be a secondary peak at 10.6 kV. To be Hg there would have to be a secondary peak at 10.6 kV. To be Hg there would have to be a comparable peak at 11.9 kV, etc. If such clues are insufficient to confirm the most probable element, a confirmation by irradiating the suspected element should be made.

2. The choice of the most likely peak from one element which will be "clear" of overlap from other elements to simplify identification.

3. The minimum concentration of one element which

can be determined in the presence of the major elements in an object. For example, from Fig. 3a, Ti has a response of 5 times that of Ba, La, and Ce, all of which are found in clay-based redware at 4.6 kV. We could expect to determine 0.2% Ti in the presence of 1% of Ba.

4. Methods for determining both elements in an overlapping peak. Note example for determining arsenic in the presence of lead in the analysis of glass, brass, and bronze, in which arsenic and a major lead peak both appear at 10.6 kV (Fig. 3g).

5. Methods for making quantitative determinations by employing a major constituent as an "internal standard." These methods employ the "count per second" data of the tables to determine "count ratios" to normalize all elements to the "internal standard," permitting concentration of the various elements to be determined with fair accuracy.

These accuracies can be enhanced by adjusting the count ratios from measurements made on accurately made reference standards.

6. If reference standards are available having several elements present in known concentrations, other elements not in the standard can be estimated very closely by employing counts from nearby peaks after normalizing them from ratios of counts taken from the tables. For example, our silver reference standard 47.4 contains 92.5% Ag, 7.0% Cu, and 0.5% Au. Concentrations of lead at 12.6 kV would be 65/80 of the equivalent gold count at 11.5 kV (Table III). Concentrations of zinc at 8.7 kV would be 243/274 of the equivalent concentrations of copper at 8.1 kV. Arsenic has the same response as copper, and so its concentrations can be determined in a direct proportion to the copper count when employing the Cd 109 source for excitation. 100

Ę

7. The optimum excitation source can be selected from the graphs. For example, Ag, Cd, Sn, Sb, and Ba, etc., respond strongly to the ²⁴¹Am source (Fig. 3d) and weakly to the ¹⁰⁹Cd source (Fig. 3h). Also, Mn, Fe, Ni, Co, Cu, and Zn have a better response to the ¹⁰⁹Cd source (Fig. 3, f and g) than to the ²⁴¹Am source (Fig. 3, b and c). Also, the ⁵⁵Fe source (Fig. 3a) is required for low atomic-numbered elements such as S, Cl, K, Ca, Se, Ti, and V. In glass and ceramic analysis it is frequently necessary to employ more than one source.

It should be noted that the response data presented are a function of the strength of the excitation source; the geometry of the sample-exciter-detector system; and the span, resolution, and sensitivity of the detector system, to name a few. The data of Table III can be employed by other instrumentation conditions by measur-

FIG. 3. Plots of instrument sensitivity in cps of the various x-ray fluorescence peaks vs energy for ⁵⁵Fe, ¹⁰⁹Cd, and ²⁴¹Am excitation sources. These plots make possible a rapid assignment of the most probable elements to the spectrum of an art_object. The plots also indicate possible interference from other elements.

t t 1

ing a few high purity elements over the energy span of the instrument and determining the ratio of peaks from these elements to the data tabulated in Table III. This ratio can then be applied to the other elements in the table regardless of the geometry, sensitivity, and other factors listed above.

D. Computation of Concentrations in Weight Percent from Peak Spectra Values without Reference Standards

If we have elements P, Q, R, S, and T present with net peak counts of p, q, r, s, and t, and we choose P to be our internal reference standard, then we proceed as follows:

From Table III tabulate the counts per second for these elements at the channels selected. Call these peak values p', q', r', s', and t'. Since P has been selected as the "internal reference," then we can normalize the response of the instrument for the other elements to P. Dividing p' by p', q', r', s', and t', we have multiplying factors for P, Q, R, S, and T of 1, p'/q', p'/r', p'/s', and p'/t', respectively. Then

$$p \times 1 + \frac{q \times p'}{q'} + \frac{r \times p'}{r'} + \frac{s \times p'}{s'} + \frac{t \times p'}{t'} = U$$
(1)

where U is the total count normalized to P. Percentage by weights of P, Q, R, S, and T will be:

$$\%P = \frac{1 \times p}{0.01U} \quad \%Q = \frac{q \times p}{q' \times 0.01U}$$

$$\%R = \frac{r \times p}{r' \times 0.01U} \text{ etc.}$$
(2)

E. Analysis Procedures for Metals from Teletype Spectra Read-Out

We find it convenient to employ a data sheet similar to Table IV.

1. Locate the channels where the peaks of elements P, Q, R, S, and T appear. This can be done to a close approximation from Table III. The exact channels are determined from the Teletypewriter read-out. Record the peak counts at these channel locations in column C of a table similar to Table IV.

2. Run a spectrum of element P for "p" counts. "p" will be silver for silver-based alloys, copper for brass and bronze, and tin for pewter. Tabulate the counts of the peak channel locations in column A. This will be the "baseline."

3. Subtract the counts of the baseline at these channels from values q, r, s, and t and tabulate them in column D.

These are net counts for each of the elements. Do not subtract "p" since this is the internal standard.

4. Record in column B the ratios of counts calculated from Table III for the various elements at the selected channels with element P in the numerator. These fractions will normalize counts from all elements to that of element P.

5. Tabulate in column E the products of columns B and D. The sum of these values will be the "total equivalent count."

6. The weight percent of the various elements can then be tabulated in column F by dividing each value in column E by 0.01 of the total equivalent count.

7. If normalizing ratios of column B are found to be in error owing to matrix effects, they can be adjusted by analyzing similar alloys of accurately known compositions. Results of these procedures are illustrated in

TABLE IV. Effect of excitation source: Brass/bronze determinations, sample MB 180

Column description: A: baseline copper 99.9% + -counts per sec; B: ratio copper counts to element from tables; C: measured counts per sec; D: counts minus baseline except for copper (C - A); E: product $B \times D$, normalizing to copper; F: calculated % of each element, $100E/\sum E$; G: wt % of elements before melting and casting.

					²⁴¹ Am							¹⁰⁹ Cd			
Element	kV	A 279 sec	В	C 413 sec	D	E	F	G	A 60 sec	В	C 90 sec	D	Е	F	G
Mn	5.9	0.39	3	0.32	0	0	0	0.07	0.27	2.3	0.20	0	0.00	0.00	0.07
Fe	6.4	0.65	2.9	0.57	0	0	0	0	0.45	1.6	0.54	0.09	0.14	0.15	0.00
Co	6.9	0.63	2.2	0.59	0	0	0	0	0.28	1.5	0.46	0.18	0.27	0.20	0.00
Ni	7.5	0.63	1.3	0.69	0.06	0.08	0	0.17	0.47	1.2	0.70	0.23	0.28	0.21	0.17
Cu	8.1	35.8	1.0	24.2	24.2	24.20	81.00	82.6	150	1.0	110	110	110	82.50	82.6
Zn	8.7	0.72	0.79	3.2	2.5	2.00	6.67	6.45	1.4	0.89	12.0	10.6	9.40	7.06	6.45
Pb + As	10.6	0.18			0.56				0.1		3.0	2.9			
As	10.6		0.59	0.76	0.08	0.05	0.16			1.0		0	0.00	0.00	0.00
Ph	12.6	0.11	2.0	0.92	0.81	1.60	5.30	7.0	0.06	3.0	3.72	3.66	11.80	8.90	7.00
Bi	13.1	0.065	2.1	0.1	0.03	0.06	0.20	0	0.01	3.2	0.21	0.20	0.72	0.54	0.00
Au	11.6	0.09	2.7	0.11	0.02	0.05	0.16	0	0.03	3.7	0.08	0.05	0.18	0.09	0.00
Aø	22.2	0.043	0.20	0.024	0.01	0.002	0.006	0		Noi	response	at follow	wing ener	rgies	
Cď	23.3	0.032	0.31	0.07	0.04	0.012	0.04	0							
In	24.3	0.046	0.29	0.21	0.16	0.05	0.16	0							
Sn	25.3	0.029	0.23	7.2	7.2	1.65	5.50	3.1							3.10
Sb	26.3	0.040	0.32	0.37	0.33	0.10	0.35	0.0							
Σ	-0.0	0.010				29.90	99.69						132.98		

Table V for copper-based alloys, and in Tables X and XI for glass.

II. RESULTS

A. Analysis of Brass and Bronze "Standards"

While the ingredients of the various brass coupons were accurately weighed in, Dr. Charles Coxe of Handy Harman, knowing the metallurgical problems associated with such sample preparation, could not provide us with "certified" analysis data. We arbitrarily selected Ref. No. 29.7 as our brass "standard" and analyzed the other specially prepared brass specimens in terms of 29.7

TABLE V. Normalizing factors for copper-based alloys (copper as internal standard).

Computation techniques with overlapping peaks. Example: arsenic in presence of lead. Arsenic and lead both have strong emission lines at 10.6 kV but lead is "in the clear" at 12.6 kV. In the absence of arsenic the ratios of the lead peak at 10.6 to that at 12.6 kV are: ²⁴¹Am: 16/20 = 0.80; ¹⁰⁹Cd: 75/80 = 0.94. It can be assumed, then, that arsenic accounts for that part of the peak at 10.6 kV that is greater than the above fraction of the 12.6 kV peak. Arsenic normalized for copper = 0.59 (Pbi_{0.6} - 0.8 Pbi_{12.6}) for ²⁴¹Am; = 1.0 (Pbi_{0.6} - 0.94 Pbi_{12.6}) for ¹⁰⁹Cd. For column description, see legend to Table IV.

Eleme	Element		m		¹⁰⁹ Cd				
Column:	kV	C (cps)	B (Cu/ x)	-	C (cps)	B (Cu/ x)			
Mn Fe Co Ni Cu Zn As Pb Pb Bi Au Ag Cd In	$5.9 \\ 6.4 \\ 6.9 \\ 7.5 \\ 8.1 \\ 8.7 \\ 10.6 \\ 12.6 \\ 13.1 \\ 11.6 \\ 22.2 \\ 23.3 \\ 24.3$	$13.3 \\ 14.0 \\ 18.0 \\ 30 \\ 40 \\ 51 \\ 68 \\ 16 \\ 20 \\ 19 \\ 15 \\ 200 \\ 129 \\ 136$	$\begin{array}{c} 3.0\\ 2.9\\ 2.2\\ 1.3\\ 1.0\\ 0.79\\ 0.59\\ 2.5\\ 2.0\\ 2.1\\ 2.7\\ 0.20\\ 0.31\\ 0.29 \end{array}$		$\begin{array}{c} 104 \\ 148 \\ 159 \\ 205 \\ 243 \\ 274 \\ 244 \\ 75 \\ 80 \\ 76 \\ 65 \\ 15 \\ 6 \\ 5 \end{array}$	$\begin{array}{c} 2.3\\ 1.6\\ 1.5\\ 1.2\\ 1.0\\ 0.89\\ 1.0\\ 3.2\\ 3.0\\ 3.2\\ 3.7\\ 16\\ 40\\ 49 \end{array}$			
Sn Sb	$\frac{25.3}{26.3}$	$\begin{array}{c} 173 \\ 125 \end{array}$	$\begin{array}{c} 0.23 \\ 0.32 \end{array}$		$\frac{5}{4}$	49 60			

weighed-in value. Results of these measurements are listed in Table II. Typical differences appear on the two sides of the casting owing to segregation during casting.

B. Comparisons of Results from Cadmium-109 and Americium-241 Sources on Brass and Bronze Analyses

Data of Table IV were taken with both our ¹⁰⁹Cd and ²⁴¹Am sources. Data covering 5 to 35 kV were stored in 500 channels of the 512-channel memory bank or 60 V per channel.

The instrument was set to turn off after 10 000 counts were accumulated in the peak copper channel at 8.1 kV. Time in seconds is accumulated in channel zero which we use to reduce the counts accumulated to "counts per second" for convenience of comparison to values taken from Table III.

Data were tabulated in Table IV according to the procedure outlined in "Analysis Procedures from Teletype Spectra Read-Out" to provide the reader with a feel for the quantities actually measured on bronze sample MB 180 employing sources ¹⁰⁹Cd and ²⁴¹Am. It is important to note that elements appearing above 22.2 kV do not appear with the ¹⁰⁹Cd source because of low instrument response and because there is a silver artifact in the 20- to 22-kV region due to Compton backscatter from the silver radiation produced by the ¹⁰⁹Cd source. Because of these factors we chose to employ the ²⁴¹Am source for copper-based alloys although tin and silver in the 3.7 kV and 3.1 kV, respectively, could be employed with the ¹⁰⁹Cd source if ²⁴¹Am source is not available.

Summary results from five brass and bronze samples based on these same procedures are given in Table VI. These include measurements made from 20-mg filings taken from MB 180 and HH 29.7. While we do not have a "certified" assay of these bronzes, we have listed the components added to make up the melt as reported by the founder (column G). Since significant differences in composition of the chilled bottom faces and the top faces of the castings exist (Table II), we were surprised to find such a close agreement between our analyses based on Table III and samples MB 180, MB 181, and MB 249

TABLE VI. Summary brass analyses: Prepared test samples, ²⁴¹Am source.

Sample:	e: MB 180			MB 181		MB 249		HH 29.5		HH 29.3		HH 29.7				
Column:	A.	B.	G.	F.	F. Chips	G.	F. Us	G. As cast	F. Us	G. As	F.	G. As	F.	G. As	F. Solid	F. Chips
Element	100%	Cu »	ns cast	bond	20 mg	115 Cast	03	115 (450	05	cast		cast		cast		20 mg
Mn	0.39	3	0.07	0	0.07	0	0	0	0							
Fe	0.65	2.9	0.00	0	0	0.03	0	1.96	4.3							
Co	0.63	2.2	0.00	0	0	0	0	0	0							
Ni	0.63	1.3	0.17	0	0	0.11	0	0	0							
Cu	35.8	1.0	82.6	81.00	85.0	88.5	82.0	87.2	90.0	75	73.5	60	59.5	75	72.0	71.4
Zn	0.72	0.79	6.45	6.67	3.8	3.0	3.2	5.3	5.7	24.9	25.2	40	40.0	24.5	26.1	23.8
Pb + As		0.18														
As	0.00	0.59	0.16		0		0	0								
Pb	0.11	2.0	7.0	5.3	6.6	0.44	0.60	0.09	0.06	0	0.3	0	0.5	0	0.4	0.3
Bi	0.06	2.1	0.0	0.20	0.0	0	0.04	0	0							
Au	0.09	2.7	0.0	0.30	0.0	0	0.00	0	0	0	0.05	0	0.05	0	0.08	0.3
Ag	0.043	0.20	0	0.006	0.0	0	0.05	0	0	0.1	0.14	0	0.02	0.5	0.60	0.53
Cd	0.032	0.31	0	0.04	0	0	0.08	0	0.01							
In	0.046	0.29	0	0.16	0	0	0.41	0	0.01							
Sn	0.029	0.23	3.1	5.5	4.1	7.75	11.3	0.18	0.43	0	0.03	0	0.00	0	0.05	0.70
Sb	0.040	0.32	0.0	0.35	0	0	0.12	0	0							

TABLE VII. Analysis results: Six Paul Revere tankards, Massachusetts, 1768.

Analysis of eight parts from each of six tankards made by Paul Revere in the period 1768–1771, shown in Fig. 4. The difference in the copper content of the "bottom of body" and the "side of body," which are both the same piece of metal, is due to an acid dip made by the silversmith to remove oxides and copper at the surface just prior to the final polishing. The silver-rich surface has been removed from the side of the body by repeated polishings whereas the infrequent polishing of the bottom left it in its silverrich condition. Abrasive-containing silver polishes cut through this layer in a few minutes. While we have only tabulated values of Ag, Cu, Au, and Pb in this table, we actually recorded a total of 14 elements. It was interesting to note that several parts of the various tankards have essentially the same composition, indicating that they were probably made from the same melt. Furthermore, one might conclude that he mixed his alloys in small batches, judging by the many differences in analysis. The variability of composition of the parts on the same piece is typical of American-made pieces.

Accession		Bottor	Bottom of body			Side of body			Base rim				Lid			
Number	Ag	Cu	Au	Pb	Ag	Cu	Au	Pb	Ag	Cu	Au	Pb	Ag	Cu	Au	Pb
57.859.1	93.8	5.4	0.19	0.26	94.0	5.5	0.15	0.22ª	94.5	4.7	0.09	0.20	94.6	4.5	0.13	0.28
.2	93.6	5.4	0.04	0.26	92.9	6.0	0.04	0.31	92.9	6.5	0.15	0.26	90.7	8.5	0.15	0.31
.3	93.3	6.0	0.18	0.33	86.5	12.7	0.12	0.30	93.3	6.2	0.16	0.21	93.4	6.1	0.14	0.22
.4	93.9	5.4	0.08	0.20	92.9	6.6	0.09	0.17	93.1	6.3	0.17	0.23	94.3	3.8	0.16	0.20
.5	93.4	6.0	0.13	0.22	91.4	8.0	0.17	0.24	92.8	6.9	0.12	0.18	94.0	5.4	0.16	0.23ª
.6	93.1	6.4	0.14	0.32	88.7	10.5	0.10	0.37	93.3	5.5	0.13	0.22^{a}	93.8	5.6	0.17	0.27 ^a
		Handle face			Handle side			Finial					Hi	nge		
	Ag	Cu	Au	Pb	Ag	Cu	Au	Pb	Ag	Cu	Au	Pb	Ag	Cu	Au	Pb
57.859.1	93.4	6.1	0.15	0.20	90.0	9.2	0.13	0.27	94.2	5.2	0.16	0.29	92.7	6.8	0.03	0.14
.2	94.3	5.2	0.16	0.29	93.8	5.7	0.17	0.20ª	92.1	6.5	0.32	0.35	85.4	12.0	0.11	0.27
.3	91.2	7.4	0.13	0.21	90.5	8.5	0.18	0.28	94.5	4.9	0.13	0.10	91.4	8.1	0.07	0.14
.4	94.1	5.4	0.19	0.19 ^a	91.0	8.1	0.20	0.16	93.8	5.7	0.19	0.24 ^a	90.1	8.7	0.05	0.17
.5	93.1	6.4	0.18	0.17	93.5	5.7	0.21	0.24 ^a	93.9	5.7	0.15	0.11	90.2	9.2	0.15	0.19
.6	94.4	5.2	0.16	0.21	89.2	9.5	0.09	0.22	91.3	7.0	0.28	0.35	92.5	6.8	0.08	0.30

^a Certified values. The seven parts designated postscript "a" are of the same composition, indicating that they were probably all cast from the same melt. Other parts can also be grouped together based on homologous compositions.

which were taken from intermediate sections of the original castings. The ¹⁰⁹Cd source provides high signal-to-noise or baseline ratio to the elements below 12 kV and hence closer agreement than from the ²⁴¹Am source.

Since silver appears as an impurity in old brass and bronze, it is important to be able to detect it in the 0.05% to the 0.5% level to detect forgeries. We therefore employ the ¹⁰⁹Cd source for the elements listed up to 15 kV and the ²⁴¹Am source from 15 to 45 kV. The ²⁴¹Am source is free from the silver artifact.

We also adjust the multiplier factor of column B to "fit" our reference standards, thereby increasing the accuracy considerably as judged by a closer fit to many objects which have been analyzed by other methods.

We have recently prepared a computer program which provides a better baseline correction for small samples (5 to 25 mg) so that there is a very close agreement with the analysis of the parent block from which the filings were obtained. Details of this work will be reported after these preliminary results are confirmed.

C. Computer Read-Out

In mid-1971 we obtained a Hewlett-Packard 2114B computer with our HP 7620A chromatograph with the intent of adapting this computer to our x-ray fluorescence equipment. While Hewlett-Packard said that it was impossible at that time to operate this computer on line without going through an intermediate tape punching and reading operation, P. H. Gaither of our Scientific Advisory Committee not only took the necessary few steps to operate it on line but also to develop programs to make the computations and to provide direct read-outs of weight percent of 15 elements in the silver, brass, and pewter programs, and 35 elements in our glass program. There is really no limit to the number of elements which can be determined in any one analysis. There is, however, a practical limit mostly because of the clerical requirements if too many elements are included in the analysis.

The computer read-out has enabled us to analyze 15 elements and characterize over 2000 silver objects of American origin and about 100 of British origin during the past year. We can now distinguish the origin and authenticity of most pieces with a high level of confidence on the basis of silver, copper, and minor element content. Table VII shows typical results from six tankards made by Paul Revere in 1768 (Fig. 4). Only 4 elements are listed in this table although 15 were determined. We also analyzed in one afternoon a group of 24 15th century Italian bronze objects in a joint study with the National Gallery of Art and the Louvre and showed that 3 of these objects had 15 elements present in identical concentration and, even though they had been separated for over 100 years, they were indeed poured from the same batch of metal. Furthermore, 1 piece was a medallion of a 15th century pope and was signed by the sculptor. Details of this work, which would be the envy of Ripley's "Believe It or Not" creation, will be published soon.

D. Operational Procedures for Computer Read-Out for Metal Objects Employing "Reference Standards"

1. Choose the element which is to provide the baseline correction. This is generally the principal element or one whose secondary peak overlaps an important element peak.

Alloy	Principal element	Baseline	Source
Sterling silver	Silver	Silver	¹⁰⁹ Cd
Silver solder Pewter Brass Bronze German silver	Tin Copper	Tin Copper	¹⁰⁹ Cd ²⁴¹ Am
		the second se	

The ¹⁰⁹Cd source actually produces silver x-rays which are a result of a nuclear transformation. These x-rays not only excite the elements in the object being analyzed but also enter the detector by a direct backscattering process, or by the Compton backscatter, so that a silver artifact always appears when employing the ¹⁰⁹Cd source. When analyzing pewter, the 22.3 kV backscatter peak is more prominent than the tin peak which appears with the secondary silver peak near 25 kV. We employ tin to produce the baseline when analyzing pewter since this compensates for the 25 kV silver artifact which appears in the tin peak.

This same principle applies in separating the secondary copper peak from the principal zinc peak when analyzing brass. We have standardized our procedure to accumulate data from pure copper for the baseline and from the copper in the brass or bronze object until a count of 10 000 is reached in the 8.1 kV copper peak. This requires about 5 min. Here the copper baseline is made to equal the principal copper peak from the object so that the overlap of copper and zinc at 8.7 kV is resolved, leaving only counts from the zinc.

2. Choose the element which is to serve as the "internal standard." Counts from the appropriate peaks of all the elements are "ratioed" to this element.

3. Locate the channels where the elements of interest appear. This can be done to a first approximation from Table III and precisely located from the Teletype read-out.

FIG. 4. A beautiful set of six tankards in the Winterthur Collection made by Paul Revere in 1768 provided us with an excellent opportunity to characterize Revere's alloy-making practice as noted in Table VII. Photograph courtesy of The Henry Francis du Pont Winterthur Museum.

TABLE VIII. Computerized analysis of metals.

Accompanying notes:

a. Arsenic, which frequently appears with lead in glass and bronze, is determined as follows. From Table I, lead counts in the absence of arsenic

	Counts						
kV	²⁴¹ Am	¹⁰⁹ Cd					
10.6	16	75					
12.6	20	80					
Ratio 10.6/12.6	0.80	0.94					

Since arsenic appears at the 10.6 kV peak, its net count will be: arsenic normalized to copper:

Source	
²⁴¹ Am	As count = 0.59 (Pb _{10.6} - 0.80 Pb _{12.6})
¹⁰⁹ Cd	As count = 1.0 (Pb _{10.6} - 0.94 Pb _{12.6})

b. Since the Compton backscatter peak (CBS) at 20.8 kV builds up at the expense of the principal silver peak at 22.3 kV, errors occurring in analyzing small samples (5 to 100 mg) can be reduced by adding three times the 20.8 kV peak to the 22.3 kV silver peak.

Alloy:					Silver	Pewter	Brass, bronze
Source	:				¹⁰⁹ Cd	¹⁰⁹ Cd	²⁴¹ Am
Baselin	ne:				Ag	Sn	Cu
"Interi	nal referen	ce":			Ag	Sn	Cu
Range.	kV:				5-35	5-35	5-35
Peak c	ount baseli	ine ele		2000	2000	10 000	
Numb	er of chann	els (3	0 kV):		500	500	500
Norma	lizing facto	or:			KAg	K _{Sn}	K _{Cu}
Item	Element	Ζ	Chan- nel	kV			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	Mn Fe Co Ni Cu Zn As Ag	25 26 27 28 29 30 33 47	$ \begin{array}{r} 12 \\ 22 \\ 30 \\ 40 \\ 50 \\ 59 \\ 92 \\ 286 \\ 263 \\ 263 \\ \end{array} $	5.9 6.4 6.9 7.5 8.1 8.6 10.6 22.3 20.8	0.120 0.100 0.100 0.070 0.175 0.120 0.040 1.0 (b)	$\begin{array}{c} 0.015\\ 0.01\\ 0.01\\ 0.02\\ 0.071\\ 0.043\\ 0.015\\ 0.00\\ \end{array}$	1.0 0.8 0.3 0.3 1.0 0.64 0.40 (a) 0.11
$9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15$	Ag (CBS) Cd Sn Sb Au Hg Pb Bi	48 50 51 79 80 82 83	$\begin{array}{c} 303\\ 338\\ 357\\ 105\\ 114\\ 127\\ 134 \end{array}$	23.3 25.3 26.3 11.6 13.9 20.0 13.1	$\begin{array}{c} 1.0\\ 1.1\\ 1.2\\ 0.13\\ 0.12\\ 0.10\\ 0.09 \end{array}$	$\begin{array}{c} 0.00 \\ 1.0 \\ 1.2 \\ 0.01 \\ 0.01 \\ 0.052 \\ 0.035 \end{array}$	$\begin{array}{c} 0.10 \\ 0.097 \\ 0.09 \\ 1.40 \\ 1.45 \\ 1.60 \\ 1.65 \end{array}$

4. Include two channels from each side of these "peak" channels so that a "shift" of the peak channel will not "lose" the peak value. A peak shift of one channel in 24 h is not uncommon. The sum of the counts of the peak and the adjacent four channels provides the "gross count" for each element. 5. Establish the gross count of the same five channels from the baseline for each element. Deduct these from item 4, giving a "net count."

6. The product of these net counts and the normalizing factors (K) of Table VIII gives the "weight equivalent count" for each element.

7. The weight percent of each element is in the ratio of weight equivalent count to 0.01 times the sum of weight equivalent counts of all the elements being analyzed.

Each morning we make a baseline run and a run from our reference standard. If there is a channel shift of the principal peaks or a change in response to the principal elements, we compensate the "K" (normalizing factor of Table VIII) and the channel number for these changes in the computer. This adjustment takes only a few minutes.

In a few cases where we checked the reference standards of other laboratories, we made several determinations over an extended period and averaged the results to achieve a high level of accuracy. Such duplicate analyses are seldom justified in our routine work.

Table VII is given as an example of our silver analysis study. Four of the 15 elements determined are tabulated for 8 parts each of a 6-tankard set made by Paul Revere in 1768.

It appears that Mr. Revere made up his castings in 2 units per lot. The items marked with a superior "a" are near enough alike chemically to have been made from the same batch of molten silver. From these measurements we might even be able to say that his tankard department was geared up to make two tankards at a time.

A characteristic of American-made holloware silver (coffee pots, tea services, tankards, etc.) is the variability of composition of the various parts in a piece. British-made silver has a smaller variability between parts of a piece, and none of them has yet been found to contain less than the 92.5 % minimum of silver. Because of the stringent enforcement of the minimum silver requirement, the British silversmith played it safe so that 94 to 95 % silver is common and 92.5 % is the exception. Most American silversmiths, on the other hand, exercised little if any control over the composition of their alloys.

Fig. 5 shows a British-made tankard whose body was replaced and touchmarked "J.R." for Joseph Richardson, famous Philadelphia silversmith. The composition of the various parts and of the silver solder used on this tankard is listed in Table IX.

E. Analysis of Glass and Ceramics

Museum laboratories employ a wide range of instruments and techniques for the analysis of glass and ceramic objects. These range from wet chemical methods to emission spectroscopy and atomic absorption, to name a few. No one method provides a complete analysis. Furthermore, few curators will permit samples of sufficient size for reasonable analytical accuracy to be removed. Since none of these limitations applied to energy-dispersive x-ray fluorescence analysis, we decided to try to segregate 48 glass objects into two sets. Some were authentic Massachusetts-made Sandwich 3-mold blown glass and some were forgeries. It was no surprise to find that the 38 detectable elements in each of the 48 objects varied considerably and no order could be established.

Some order was restored, however, when the curator separated the objects into two sets based on other information which he had withheld up to this time. The analytical procedure was as follows:

1. Thirty-five elements at peak locations determined from Table III were listed in a table similar to Table XII.

2. An "element finder mask" (Fig. 6) in which the locations of the elements of item 1 were underlined to facilitate locating the peaks without having to examine 512 6-digit numbers.

3. A baseline was established for each of our sources by irradiating a piece of high purity silica for 500 sec. Counts at the peak locations were tabulated in column A.

4. The object was irradiated for 500 sec, and the gross counts were tabulated in column B.

5. The concentrations of the various elements were calculated from the count data of Table III after subtracting the baseline counts.

While we later learned of the errors in absolute concentrations due to matrix effect, the results still were usable because they were consistent between pieces.

FIG. 5. Example of a British-made tankard which had been "up-graded" to help fill the demand for higher priced "American antiques." A former owner, apparently in attempting to remove the marks which distinguished it as being British-made, ruined the body and replaced it with 20th century sterling silver which lacked impurities characteristic of old silver, as shown in Table IX. Photograph courtesy of The Henry Francis du Pont Winterthur Museum.

TABLE IX. The Winterthur Museum Analytical Laboratory silver analysis data report: "J. Richardson" tankard, accession number 64.52.

Analysis of parts of a tankard (Fig. 5) bearing the J.R. touchmark of Joseph Richardson, famous 18th century Philadelphia silversmith. All parts except the body are high in silver, typical of early British pieces. The body, lacking traces of gold, is strictly 20th century silver of compositions 92.5% Ag, 7.5% Cu. One theory is that a previous owner, wishing to upgrade an otherwise good British tankard to take advantage of the higher prices being paid for American antiques, goofed when he attempted to remove the inscription and the original maker's mark. He made a new body from 20th century sterling silver, which is free of the gold impurity of old silver. Furthermore, he employed a 20th century silver solder to bond the bottom of the handle to the new body. This solder lacks the 0.2 to 1.0% lead which is present as an impurity in old solders. Furthermore, his copy of Richardson's touchmark was not too carefully made so that the forgery was detected several years ago. This piece is part of Winterthur's "Study Collection," which includes odd pieces for training graduate students in residence to be wary.

1								the second s	and the second se
Part	Ag	Mn	Fe	Со	Ni	Cu	Pb	Zn	Au
Lid Base rim Side Handle Top of hinge Bottom of hinge Underside Solders Bottom to rim Top of handle to side	92.8 93.8 92.5 91.7 94.7 94.6 94.7 84.7 77.8 84.7 77.8	$\begin{array}{c} 0.00\\ 0.03\\ 0.02\\ 0.06\\ 0.02\\ 0.03\\ 0.08\\ 0.04\\ 0.11\\ 0.14 \end{array}$	$\begin{array}{c} 0.03 \\ 0.02 \\ 0.04 \\ 0.03 \\ 0.07 \\ 0.13 \\ 0.06 \\ 0.06 \\ 0.10 \\ 0.14 \end{array}$	$\begin{array}{c} 0.04\\ 0.05\\ 0.06\\ 0.04\\ 0.04\\ 0.05\\ 0.05\\ 0.05\\ 0.12\\ 0.13\\ \end{array}$	$\begin{array}{c} 0.02\\ 0.02\\ 0.01\\ 0.03\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.05\\ 0.10\\ 0.09\\ \end{array}$	$\begin{array}{c} 6.5 \\ 5.5 \\ 7.4 \\ 7.4 \\ 4.6 \\ 4.6 \\ 4.5 \\ 11.6 \\ 13.8 \\ 6.3 \end{array}$	$\begin{array}{c} 0.32\\ 0.31\\ 0.01\\ 0.37\\ 0.20\\ 0.24\\ 0.31\\ 0.43\\ 0.17\\ 0.09 \end{array}$	$\begin{array}{c} 0.07\\ 0.07\\ 0.06\\ 0.14\\ 0.09\\ 0.09\\ 0.07\\ 3.0\\ 7.6\\ 3.5 \end{array}$	$\begin{array}{c} 0.13\\ 0.11\\ 0.00\\ 0.16\\ 0.12\\ 0.13\\ 0.14\\ 0.09\\ 0.02\\ 0.10\\ \end{array}$
Dottom of manale to a	140 00.0								

	101 E	MENT	CUAI	HICI	FILIDE	D S.	- 75 4	1	6	10	honil
	CLC	WICIN	GRA	ANCE	FINDE	COOLEE.	000000	000154	000190		
	000000	000500	000003	000014	000188	000133	0000000	000759	000745	Ma i	6
	000008	000214	000312	000492	000514	000678	000766	000788	000/83	Fe	۱.
	000016	000805	000812	000841	000830	000729	000738	000703	000673		
	000024	000586	000674	000658	000715	000819	000800	000799	000796		10
	000032	000879	000879	000827	000747	000781	000794	000724	000701	11	10
	000040	000739	000738	000701	000722	000661	000643	000616	000673	5 I I	វិកិ
	000048	000622	000591	000537	000553	000492	000485	01)473	000502	-	0
	000056	000429	000479	000412	000387	000391	01 374	000345	00035.	64 4	80
	200064	000312	000320	000336	000293	000586	000303	:);,J.'*#	00027-		
	200072	000241	000284	000244	000225	000228	000551	000535	00055 -		
	100080	000229	000202	000189	000180	000182	000181	000189	000214		
	:00088	000212	000210	000244	000200	000219	000166	000184	00018	18,P	5 90
	100006	000155	000154	000142	000161	000131	000143	000142	000107		
	200104	000127	000122	000110	000134	000103	000107	000126	0001258	6,A	1100
	100112	000124	000128	000124	000099	000102	000107	000110	0000 % %		
	220120	000117	000123	000112	000140	000154	000179	000160	00013" P	b 12	25
	202120	000117	000133	000155	000136	000161	000138	000106	00011 .	N 13	34
	202126	000140	000155	000172	000196	000174	000150	000127	00014 .	b 13	39
	100136	000124	000184	000172	0000099	000111	000133	000179	00019.	18	60
	100144	000108	000109	000095	000099	000082	000079	000087	000.3.4.		
	.00152	000177	000160	000108	000082	000911	000211	000190	00011 - 1	1 16	3
	00160	000096	000105	000142	000182	000211	000211	000000	00012:		-
	100168	000121	000085	000076	000079	000067	000156	000122	00011 7	7 1 1	79
	-00176	000190	000205	000263	000595	000204	000156	000123	00057		
	200184	000108	000111	000144	000135	000136	000173	000203	000001	IL IS	2
	00192	000316	000302	000247	000187	000161	000098	000083	0000041	402	06
200-	-00500	000083	000137	000154	000176	000224	000250	1.65000	000324		
	100208	000296	000239	000178	000136	000081	000085	000077	0000-1		
	.00216	000063	000055	000057	000063	000050	000054	000058	00007		
	.)0224	000062	000093	000091	000103	000096	000087	000077	00000		
	10232	000074	000076	000073	080000	000061	000066	000063	001040		42
	20240	000079	000080	000110	000086	000094	000095	000072	003	10 4	1. 2
	.)0248	000070	000069	000058	000073	000068	000068	000082	000	CU 6	
	000256	000073	000058	000066	000058	000065	000074	000085	000.		
	000264	000076	000061	000085	000079	000070	000073	000063	0001		
	310272	000067	000070	000067	000057	000058	000075	000059	0000.1	Pe	676
	110280	000095	000134	000162	000206	000248	000530	000284	0005.	Ag a	
	10288	000213	000126	000118	000071	000057	000074	000076	0000~:		
	100296	000092	000093	000144	000189	000254	000267	000324	00031	OH I	302
	100304	000290	000231	000209	000142	000097	000098	000085	00007 -		
	200312	000081	000112	000173	000210	000250	000380	000389	00045		
	100312	000509	000473	000468	000356	000213	000169	000109	00006-	in l	522
	100320	000000	000102	000133	000175	000223	000279	000347	000424		
	100320	000095	000102	000514	000500	000412	000346	000555	000143	Sn i	858
	100336	000460	000320	000076	000096	000106	000158	000205	000301		
	100344	000124	000097	0000468	000492	000518	000533	000453	566000	86	357
	000352	000334	000435	000123	000091	000079	000089	000091	000109		
	000360	000255	000176	0007256	000270	000359	000355	000361	000355		
	.)00368	000124	000194	000230	000183	000107	000097	000070	000077	Te i	376
	000376	000334	000288	000238	000100	000081	000103	000098	000143		
	000384	000075	000067	000071	0000033	000111	000082	000080	000070	1	386
	200395	000172	000139	000133	000122	000089	000084	000096	000087		
	000400	000085	000085	000067	000090	000000	000160	000187	000176		
	000408	000076	000077	000105	000125	000133	000080	000118	00017		
	000416	000133	000102	000106	000080	000083	000009	000336	000352		
	000424	000124	000182	000214	000590	000313	000309	000330	000182	Ca	484
	000432	000418	000466	000483	000474	000467	000334	000212	000047	99	404
	000440	000149	000112	000112	000112	000140	000187	000225	0002477		
	000448	000319	000341	000349	000371	000388	000439	000479	000473	88	493
	000456	000441	000386	000581	000189	000156	000133	000113	000100		
	000464	000133	000154	000183	000245	000313	000334	000331	000375		
	000472	000338	000376	000402	000487	000500	000482	000376	000277	La	475
	000480	000252	000170	000139	000119	000127	000128	000168	000235		
	000488	000243	000309	000370	000348	000349	000281	000384	000426		
	000496	000474	000532	000525	000526	000431	000363	000264	000255	Co ·	406
	000504	000203	000178	000151	000182	000213	000263	000345	000351	-	
	OD										

FIG. 6. A mask made from an $8\frac{1}{2} \times 11''$ transparent plastic "sheet protector" underlining the location of the principal peaks of the elements in the 5 to 35 kV range facilitates the location of 31 peaks without having to examine all the 512 6-digit numbers tabulated for one analysis. A teletype read-out from NBS Glass 610 has been slipped into the mask as an illustration. The left-hand column designates every 8th channel. The other 8 columns are count data from the 8 intermediate channels. It will be noted that some of the peaks shifted a channel after the mask was made. The true peaks can be seen The following features were noted between the authentic and forgery pieces:

Element	Authentic	Forgery
Ti	50–200 ppm	0
Pb	25–30%	20–22%
Mn, Fe, Co, Cu	Variable	Variable

The silica sand at Sandwich apparently contains traces of ilmenite whereas "Brand X" acid-treated their sand to remove these black titanium-containing particles.

The results of this and other glass studies will be reported elsewhere.

F. NBS Test Glasses

The National Bureau of Standards in cooperation with Robert Brill of the Corning Museum of Glass made some test glasses 610, 612, 614, and 616 containing 61 elements at concentration levels of 500, 50, 1, and 0.02 ppm. These have been used at many laboratories throughout the world to check their analytical methods. These glasses gave us an opportunity to have reference standards for comparing glasses, glazes, and ceramic bodies.

In a few scouting experiments we have used these glasses to measure the composition of component objects such as porcelain, glazed redware, and stoneware. While we don't yet know how to relate instrument readings to a heterogeneous glazed ceramic object, we have obtained significant descriptive information about several porcelain pieces that is of considerable value. This work on ceramics is in progress and will be reported when definitive results are obtained.

The NBS glasses did provide a badly needed refer-

at a glance in spite of this shift. Since our computer cannot exercise this judgement, we add the counts from the adjoining 2 channels to the peak channel count.

TABLE X. NBS 610, 612, 614 glass, 20 June 1972, 109Cd source, 5 to 35 kV, 500 sec.

Analysis results of NBS 612 glass having 61 elements at its 50 ppm level. The ¹⁰⁹Cd source is employed for elements Mn through Mo, and Au, Pb, and Bi. The ¹⁰⁹Cd source provides more favorable signal-to-baseline sensitivity for these elements than does the ²¹Am source shown in Table XI. Analytical results in column M are based on computations employing Table III and corrections from Fig. 7. Column N analytical results are direct ratios from NBS 610 glass. Column description: A: NBS 614 glass, counts/500 sec, baseline; B: NBS 610 glass, counts/500 sec; C: NBS 610 glass, net counts (B - A); D: NBS 610 glass, concentrations, ppm; E: NBS 610 glass, total net counts normalized to 500 ppm/500 sec; F: NBS 610 glass, net counts normalized to 500 ppm/sec; G: peak counts for elements from Table I; H: G × 0.005 (cps/500 ppm); I: ratio of measured counts per sec from NBS glass to column H; this column indicates fluorescence enhancement of glass matrix over pure elements; the value for gold is suspect; J: NBS 612 glass, counts/500 sec; K: NBS 612 glass minus baseline (614 glass) counts/500 sec; L: NBS 612 glass concentrations, ppm reported by NBS; M: concentrations calculated from basic data of Table III; N: concentrations calculated from ratios of counts: (counts NBS 612 × ppm 610)/(counts NBS 610).

1															
Elem	ient	А	В	С	D	Е	F	G	Η	Ι	J	K	L	Μ	Ν
Mn	25	44	75	31	485ª	32	0.064	54	0.027	2.4	50	6	40ª	102	69
Fe	26	52	93	41	460ª	43	0.086	74	0.037	2.3	57	5	51^{a}	56	56
Co	27	40	93	53	390ª	68	0.136	93	0.047	2.9	48	7	35ª	54	52
Ni	28	45	113	68	500	68	0.135	117	0.058	2.6	61	16	38ª	83	64
Cu	29	60	179	119	444ª	134	0.268	150	0.075	3.6	71	11	37ª	38	41
Zn	30	37	191	154	433ª	178	0.356	172	0.086	4.2	58	21	50	55	59
As	33			131	500	131	0.260	158	0.079	3.4		15	50	63	57
Rb	37	42	535	493	425ª	500	1.00	200	0.10	10.0	78	36	32ª	33	32
Ŷ	39	41	744	703	500	703	1.41	256	0.128	11.0	110	69	59	49	49
Zr	40	61	900	839	500	839	1.68	250	0.125	13.5	138	77	50	46	43
Nb	41	45	961	916	500	916	1.83	210	0.105	17.5	128	83	50	45	45
Mo	42	57	929	872	500	872	1.74	230	0.115	15.1	141	84	50	48	48
Au	79	37	97	60	25^{a}	1200	2.40	42	0.021	100	58	21	5^{a}		3
Pb	82	48	198	150	426ª	176	0.34	53	0.027	12.6	69	21	39ª	63	59
Bi	83	38	370	332	500	332	0.66	41	0.021	31.0	78	-40	50	63	60

^a Certified values.

ence for our glass study. The magnitude of the matrix effect was determined in which the instrument response is enhanced many-fold when elements are contained in a glass matrix than when they are separately excited. These enhancements are shown in columns H and I of Table X in which 610 glass was excited by our ¹⁰⁹Cd source. The enhancement factors are plotted as a function of atomic numbers in Fig. 7.

In Tables X and XI we have demonstrated that excellent analytical results can be obtained at low element concentrations in a similar glass matrix. We could achieve even closer agreement empirically if we were sure of the actual composition of the noncertified elements in the sample.

We have now computerized our glass analyses, which enables us to determine 15 elements with our ¹⁰⁹Cd source and 20 others with our ²⁴¹Am source in about 20 min total elapsed time. These determinations are made by having the computer compare the number of counts associated with the various elements to those of the NBS 610 glass and employing the NBS 614 glass as a baseline. We cannot determine the low atomic number major elements such as Si, Na, Mg, Al, and O, and so we report only the elements above calcium.

G. Analysis of Brill's Synthetic Ancient Glasses A, B, C, and D

In 1968 Dr. Robert H. Brill, Director of Research at the Corning Museum of Glass, prepared four glass samples designated A, B, C, and D containing related concentrations of elements detected in ancient glass found in archeological sites throughout the world. He sent duplicate samples to over 20 laboratories active in analyzing archeological objects. The results from 16

FIG. 7. Correction factors for matrix effect in glass. The NBS 610, 612, and 614 glasses have 61 elements in the 500, 50, and 1 ppm concentration levels. These elements in a glass matrix produce fluorescence radiations in greater proportion than when irradiating the pure elements by themselves. This "matrix effect" creates from 5 to 35 times as many counts than would be predicted for any one element from Table III. To determine weight per cent the counts per second values in the tables should be normalized by multiplying by the appropriate "multiplying factor."

laboratories were appraised and the most probable values were derived by a statistical analysis and reported to Dr. Brill by E. Plumat, Directeur des Recherches, Glaverbel, Gilly, Belgium, in 1970.

We analyzed these glasses and calculated the concentrations of the 19 elements reported to Dr. Brill. Plumat reported the weight percentages as oxides from

TABLE XI. NBS glass 610, 612, 614, 241Am source, 5 to 35 kV, 500 sec, 15 June 1972

Analysis results of NBS test glass 612 having 61 elements at the 50 ppm level based on NBS glass 610 having the same 61 elements at the 500 ppm level. Elements above niobium (z = 41) require the ²⁴¹Am source. Note that copper and zinc do not appear because of the high baseline at low energies. These elements are readily detected by employing the ¹⁰⁹Cd source (see Table X). Column 0 analytical results of NBS 612 glass are based on Table III with correction from Fig. 7. Column P analytical results are based on a direct ratio of the counts obtained from NBS 610 glass. Composition on basis of interpolation. Column description: Z: atomic number; A: channel number of fluorescence peak; B: kV energy of fluorescence peak; C: counts per 500 sec from 614 glass (1 ppm) for baseline; D: counts per 500 sec from 610 glass (500 ppm); E: net counts: column D-column C; F: parts per million in 610 glass; G: net counts normalized to 500 ppm; H: counts per sec per 500 ppm (column G/500); I: counts per sec from Table IIII; J: counts per sec from Table III normalized to 500 ppm and 60 V/channel span (column I × 0.0005 × 30/25); K: counts per sec measured in 610 glass (column H/column J); L: counts per sec from NBS 612 glass (50 ppm); M: net counts from NBS 610 glass (column M-column C); N: concentrations reported by NBS; O: concentrations calculated by using curve; P: concentrations calculated from counts and concentrations in 610 glass (500 × column H/column D).

Element	Z	А	В	С	D	Е	\mathbf{F}	G	Η	I	J	K	L	М	Ν	0	Р
NL	41	102	16 7	39	316	277	500	277	0.55	149	0.089	6.2	76	37	50	83	66
	40	102	17 5	12	324	281	500	281	0.56	159	0.094	6.0	75	32	50	66	57
Mo	42	207	17.0	49	200	201	254	100	0.08	200	0.120	8.2	77	34	22	45	35
Ag	47	285	22.3	40	290	241	201 500	100	0.50	120	0.078	7 3	81	42	50	81	73
Cd	48	302	23.3	39	324	280	500	459	0.07	120	0.082	11 0	107	51	50	87	56
In	49	320	24.3	56	509	453	500	400	0.90	179	0.002	0.0	02	35	50	45	37
\mathbf{Sn}	50	333	25.3	57	528	471	500	471	0.94	1/0	0.105	12 0	117	71	50	120	73
Sb	51	353	26.5	46	533	487	500	487	0.97	125	0.075	15.0	117	05	50	27	30
Te	52	374	27.5	45	364	319	500	359	0.62	132	0.080	7.9	70	20	50	51	61
Ĉs	55	434	31.1	27	483	451	500	456	0.91	106	0.064	14.0	83	56	50	10	01
Be	56	454	32.3	40	479	439	500	439	0.88	92	0.055	16	93	53	41	74	60
Da T -	57	476	22.5	31	500	469	500	469	0.94	83	0.050	18.8	74	43	36	55	46
La	51	407	94 0	24	532	408	500	498	1 00	49	0.03	33	95	61	39	76	61
Ce	28	497	04.0	500	504	100	444	59	0 116	40	0 024	4.8	531	-2	37.7	0	0
Cu	29	51	8.1	000	091	00	499	60	0.110	51	0.031	3 9	306	-23	50	0	0
Zn	30	60	8.7	329	391	62	433	100	0.12	00	0.001	1 5	74	14	31.4	53	51
Rb	37	139	13.5	60	196	136	425	136	0.27	99	0.00	4.0	17	11	01.1	50	

TABLE XII. Analysis results: Brill's synthetic ancient glass.

Column description: Z: atomic number; El: element; kV: energy of measured peak; A: percent of element reported by National Bureau of Standards, 610 glass B:

Elements	Irradiation time (sec)	Source	kV span
19–23	500	⁵⁵ Fe	$1-6 \\ 5-15 \\ 10-35$
24–30, 82, 83	500	¹⁰⁹ Cd	
38–56	500	²⁴¹ Am	

C: net counts calculated for 1% concentration level in NBS 610 glass; D: net counts calculated for 1% of values for elements from Table III; E: concentration of elements in NBS glass based on Brill glass A as standard; F: concentration of elements in Brill glasses reported by Glaverbel, S.A. Laboratoire Central, Gilly, Belgium, to Robert H. Brill of the Corning Museum of Glass in 1970 G: counts expected from 1% element concentration based on Brill's glass A; H: concentration based on linear extrapolations from NBS 610 glass; I: concentration based on linear interpolation from Table III data; J: concentration based on linear interpolation from Brill glass A.

									В	rill's glass	А				Brill's glass	В	
Ζ	El	kV	А	В	С	D	Ε	В	F	G	Η	I	В	F	G	н	J
19 20 22 23 24 25 26 27 28 29 30 82 83 38 40 47 50	K Ca Ti V Cr Mn Fe Co Ni Cu Zn Pb Sr Zr Ag Sn	$\begin{array}{c} 3.3\\ 3.8\\ 4.4\\ 5.0\\ 5.4\\ 5.8\\ 6.4\\ 7.1\\ 7.6\\ 8.0\\ 8.7\\ 12.7\\ 13.3\\ 14.2\\ 15.8\\ 22.3\\ 25.3\\ 25.3\\ \end{array}$	$\begin{array}{c} 0.046\\ 8.1\\ 0.0440\\ 0.050\\ 0.050\\ 0.050\\ 0.046\\ 0.043\\ 0.043\\ 0.043\\ 0.043\\ 0.050\\ 0.0$	$\begin{array}{c} 70\\ 4600\\ 90\\ 140\\ 9\\ 9\\ 10\\ 35\\ 34\\ 47\\ 73\\ 71\\ 80\\ 160\\ 325\\ 180\\ 200\\ 430\\ 30\end{array}$	$\begin{array}{c} 1550\\ 568\\ 2045\\ 2800\\ 761\\ 850\\ 1044\\ 1622\\ 1651\\ 1860\\ 3200\\ 6500\\ 6600\\ 6896\\ 8600\\ 8800\\ 8000\\ \end{array}$	$\begin{array}{c} 30\\ 250\\ 560\\ 450\\ 500\\ 520\\ 740\\ 800\\ 1000\\ 1220\\ 1380\\ 400\\ 350\\ 430\\ 810\\ 1000\\ 860\\ 820\\ \end{array}$	$\begin{array}{c} 0.2\\ 8.07\\ 0.054\\ 0.002\\ 0.0005\\ 0.071\\ 0.12\\ 0.066\\ 0.10\\ 0.043\\ 0.062\\ 0.029\\ 0.053\\ 0.0056\\ 0.0060\\ 0.052\\ 0.054\end{array}$	780 2150 800 170 13 130 220 60 17 675 50 90 5 550 100 60 1800 11 7 7 5	$\begin{array}{c} 2.3\\ 3.8\\ 0.48\\ 0.003\\ 0.0007\\ 0.92\\ 0.75\\ 0.12\\ 0.024\\ 0.97\\ 0.03\\ 0.07\\ 0.009\\ 0.009\\ 0.0031\\ 0.0018\\ 0.22\\ 1.3\end{array}$	326 570 1667 57K 18K 141 293 500 708 696 1667 1286 5555 6111 32K 33K 8182 9000	$\begin{array}{c} 0.5\\ 3.8\\ 0.82\\ 0.06\\ 0.07\\ 0.71\\ 0.29\\ 0.071\\ 0.41\\ 0.03\\ 0.041\\ 0.0015\\ 0.084\\ 0.028\\ 0.008\\ 0.28\\ 0.14\\ 1.4 \end{array}$	26 8.6 1.43 0.38 0.026 0.25 0.29 0.075 0.0075 0.0075 0.036 0.22 0.014 1.28 0.12 0.06 2.1 18.6	$\begin{array}{c} 285\\ 3540\\ 130\\ 75\\ 0\\ 40\\ 100\\ 25\\ 54\\ 1900\\ 175\\ 640\\ 34\\ 110\\ 100\\ 90\\ 360\\ 3000 \end{array}$	$\begin{array}{c} 0.91 \\ 6.3 \\ 0.06 \\ 0.016 \\ 0.034 \\ 0.21 \\ 0.028 \\ 0.027 \\ 2.1 \\ 0.16 \\ 0.37 \\ 0.0045 \\ 0.009 \\ 0.018 \\ 0.009 \\ 0.34 \end{array}$	313 562 2167 4687 0 190 417 893 2000 905 1094 1730 7555 12.2K 5555 10K 12K 8823	$\begin{array}{c} 0.18\\ 6.23\\ 0.06\\ 0.027\\ 0\\ 0.29\\ 0.13\\ 0.029\\ 1.17\\ 0.11\\ 0.35\\ 0.010\\ 0.017\\ 0.028\\ 0.013\\ 0.042\\ 0.37\\ \end{array}$	$\begin{array}{c} 0.87\\ 6.21\\ 0.078\\ 0.001\\ 0\\ 0.28\\ 0.34\\ 0.05\\ 0.07\\ 2.7\\ 0.10\\ 0.49\\ 0.006\\ 0.02\\ 0.003\\ 0.003\\ 0.04\\ 0.33\\ \end{array}$
56	Ba	32.2	0.050	400	8000	460	0.056	3450	0.48	7190	0.43	7.5	730	0.12	6083	0.091	0.10

TABLE XII. Continued

					Brill's glass C			Brill's glass D						
Z	El	kV	В	F	G	н	J	В	F	G	н	J		
10	K	3.3	325	2.3	141	0.21	1.0	2000	9.6	292	1.8	8.6		
20	Ca	3.8	830	3.1	230	1.45	1.46	4980	11.2	444	8.7	8.7		
20	Ti	4.4	2280	0.49	4653	1.1	1.4	330	0.24	1375	0.16	0.20		
23	v	5.0		0.003				85	0.008	10.6K	0.03	0.0015		
20	Cr	5.4	40	0.0007	57K	0.22	0.002	0	0.0017	0	0	0		
25	Mn	5.8	40			0.02	0.03	50	0.44	114	0.25	0.36		
26	Fe	6.4	80	0.23	348	0.11	0.27	86	0.34	253	0.11	0.29		
27	Co	7.1	60	0.13	462	0.07	0.12	1	0.017	59	0.001	0.002		
28	Ni	7.6	47	0.024	1958	0.045	0.06	21	0.047	447	0.02	0.03		
29	Cu	8.0	415	0.94	441	0.25	0.60	190	0.32	594	0.11	0.27		
30	Zn	8.7	55	0.03	1833	0.03	0.03	60	0.08	750	0.04	0.04		
82	Ph	12.7	10600	34.2	310	5.7	8.2	250	0.25	1000	0.13	0.20		
83	Bi	13.3		0.009				15	0.0022	6818	0.004	0.003		
38	Sr	14.2	310	0.09	3444	0.05	0.05	250	0.04	6250	0.04	0.04		
40	Zr	15.8	80	0.0037	21.6K	0.02	0.003	80	0.009	8889	0.02	0.003		
47	Ag	22.3	10	0.0018	5555	0.0014	0.003	60	0.0046	13K	0.008	0.002		
50	Sn	25.3	220	0.17	1294.	0.03	0.027	850	0.10	8500	0.10	0.10		
51	Sb	26.4	0	0	0	0	0	5700	0.72	7917	0.71	0.63		
56	Ba	32.2	$12.3 \mathrm{K}$	10.7	1150	1.5	1.7	2200	0.29	7586	0.27	0.30		

which we calculated the percentages of the elements, as shown in column F of Table XII.

We calculated the number of counts that one would expect from a 1% concentration of each of these elements by interpolation or extrapolation from the following: (1) 1% of the counts reported for individual elements in Table III (column I for glass A); (2) extrapolation to 1% from the 500 ppm level in NBS glass 610 (column H); (3) interpolation or extrapolation of the counts in Brill's glass A (column J). The agreement between the results based on NBS 610 extrapolation and on the Brill glass A is remarkably close in Brill's glasses B and D. The agreement with data derived from Table III was not as good.

The agreement with glass C, which is similar to glass A except for 500 times the lead and 200 times the barium concentrations, is quite good with the trace elements, but we missed by a factor of 4 in extrapolating from 400 ppm for lead to 34% and from 500 ppm of barium to 10.7%. This problem can be resolved by making up a reference glass similar to glass C to employ with high lead glasses and glazes. We might even use Brill's glass C for this purpose. We consider the agreement between the nonlead glasses A, B, D, and NBS 610 to be excellent.

III. DISCUSSION

A. Interpretation of Analysis Results

The analytical results from each silver object analyzed are recorded on "McBee"-type cards designed for the purpose by Dr. George Reilly of this laboratory. Each part of a complex piece is analyzed and reported separately. This is expected to permit scholars interested in the shop practices of the early silversmiths to discover if they made their own castings, trim, and solder, or if certain shops specialized and supplied certain parts to the trade. It also characterizes certain silversmiths by their practices so that "new finds" attributed to these craftsmen can be appraised on the basis of comparative data which we have on file. We can express confidence in the minimum age of brass or bronze objects on the basis of trace impurities. This could cause some embarrassment to importers of shiploads of ancient oriental art objects if someone elects to check them.

IV. FUTURE WORK

We expect to complete the analysis of the remaining 2000-odd silver and pewter objects during 1972–73. We will then tackle the more difficult problem of characterizing glass objects. We see possibilities of characterizing ceramic objects in sufficient detail to establish their place of origin. This is expected to take a few years more.

ACKNOWLEDGMENTS

The cooperation of the Winterthur staff in the studies which led to the preparation of this article has been superb and to them I say, "Many thanks!" George Reilly, our Museum Scientist, has contributed many ideas and has been very helpful in programming our computer. P. H. Gaither, of our Scientific Advisory Committee, made up the interface between the analyzer and the computer and developed the computer programs which are very flexible and versatile. Charles Coxe of Handy and Harman was very helpful in making up our metal reference standards. Without Miss Catherine Wheeler's editorial assistance I might have abandoned this project. To them—many thanks!

- 1. American Institute of Physics Handbook. (McGraw-Hill, New York, 1963), 2nd ed.
- G. G. Johnson, Jr., and E. W. White, X-Ray Emission Wavelengths and KEV Tables for Nondiffractive Analysis (ASTM Data Series DS 46) (American Society for Testing and Materials, Philadelphia, 1970).
- 3. R. S. Frankel and O. W. Aitken, Appl. Spectrosc. 24, 557 (1970).
- 4. A. L. Heath, R. S. Frankel, R. J. Gehrlee, and J. Barstow. Proc. Anal. Instr. 9, F-2 (1971).

Victor Hanson, Coordinating Scientist of the Henry Francis du Pont Winterthur Museum, received a B.S. in Physics from the California Institute of Technology in 1926 after which he did research in geophysics, ch ical process development, and "talking movies" for years in California before joining the E. I. du Pon Nemours Company at Niagara Falls in 1934. There founded and supervised the physical laboratory obtained several patents on instruments and proces One of these, described in A.C.S. Anal. Ed., Vol. 1941, "Ultraviolet Photometer for Quantitative N surements of Small Traces of Solvent Vapors in Airstill employed in checking air pollution."

He coordinated the instrument development w for the Hanford Engineer Works original atomic ene project which du Pont designed and built for the ξ ernment in 1943. He served as the first Instrum Department Superintendent at that plant through 1 and 1945.

He established and directed the following ins mentations-oriented corporate laboratories for du P 1945 Applied Physics Section

1950 Instrument Development for the A.I Savannah River Plant

1954 Radiation Physics Laboratory

1959 Engineering Physics Laboratory

He presented an invited paper at the Stockh Instrumentation Conference in 1949; was Chairma the Gordon Conferences on Instrumentation in 1 and 1950; organized and chaired the session, "Appl tions of New Analytical Techniques to Process C trol," at the 1959 National A.C.S. meeting at Atla City; and has been trustee and Chairman of the search Committee of the University of Delaware search Foundation for a number of years.

He vacationed in Greece for 3 weeks after reti from du Pont in 1969, after which he organized museum laboratory in which he undertook the deve ments reported in this article as a part time postrement job.

A REPRINT FROM

APPLIED Spectroscopy

VOLUME 27 NUMBER 5 SEPTEMBER/OCTOBER 1973 APSPA4